Skip to content

naoya-kumagai/pygmo-helper

 
 

Repository files navigation

pygmo-helper

Helper functions for pygmo

Requirements: pygmo, pygmo_plugins_nonfree

Installation via conda requires channel configurations:

conda config --add channels conda-forge
conda config --set channel_priority strict
conda install pygmo

Generic problem template

The generic shape of a pygmo UDP (user-defined problem) is as follows:

import pygmo as pg

class MyUDP:
    def __init__(self, lb, ub):
        self.lb = lb
        self.ub = ub

    def fitness(self, x):
        # compute fitness 
        # in order: objective, equality constraints, inequality constraints
        return [obj, ceqs, cineqs]
    
    # Number of equality Constraints
    def get_nec(self):
        return 4

    # Number inequality Constraints
    def get_nic(self):
        return 2

    # Lower and Upper bounds on x
    def get_bounds(self):
        return (self.lb, self.ub)
		
    # provide gradients
    def gradient(self, x):
        return pg.estimate_gradient_h(lambda x: self.fitness(x), x)

Methods inside the UDP may be jit-ed for speeds; for example, see the n-dimension Rosenbrock example from the official doc:

import numpy as np
import pygmo as pg
from numba import jit, float64

class Rosenbrock:
    def __init__(self,dim):
        self.dim = dim


    def fitness(self,x):
        return Rosenbrock._fitness(x)

    # jit-ted fitness-computation for faster computation
    @jit(float64[:](float64[:]),nopython=True)
    def _fitness(x):
        retval = np.zeros((1,))
        for i in range(len(x) - 1):
            tmp1 = (x[i + 1]-x[i]*x[i])
            tmp2 = (1.-x[i])
            retval[0] += 100.*tmp1*tmp1+tmp2*tmp2
        return retval

    def get_bounds(self):
        return (np.full((self.dim,),-5.),np.full((self.dim,),10.))

    def gradient(self, x):
        return pg.estimate_gradient_h(lambda x: self.fitness(x), x)

Using pygmo with SNOPT

Using SNOPT7 requires pygmo_plugins_nonfree to be installed as well; see official pygmo docs using on SNOPT.

Linux

The files to be downloaded are the Fortran/C Libraries (not C++). Then, provide path to

export SNOPT_LICENSE=/home/path/to/snopt7.lic
export LD_LIBRARY_PATH=$HOME/path/to/libsnopt7
export SNOPT_SO=$HOME/path/to/libsnopt7/libsnopt7.so

Windows

On Windows, provide the path to the snopt7.dll file.

import pygmo_plugins_nonfree as ppnf
path_to_snopt7 = "C:\path\to\snopt7.dll"
pygmoSnopt = ppnf.snopt7(screen_output=False, library=path_to_snopt7,  minor_version=7)

Optionally, add to system environment variables C:\path\to\snopt7.dll as SNOPT_DLL:

  1. From Start, search "Edit environment variables for your account" and open
  2. Go to Environment Variables
  3. Under "User Variables", click on New, and add entries for "SNOPT_LICENSE" (must) & "SNOPT_DLL" (optional)

Then, this may be accessed in Python as

import os
path_to_snopt7 = os.getenv('SNOPT_DLL')

About

Helper functions for pygmo

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 80.4%
  • Python 19.6%