Skip to content

Commit

Permalink
Merge pull request fastai#87 from niazangels/patch-1
Browse files Browse the repository at this point in the history
Adds documentation to vgg16.py
  • Loading branch information
jph00 authored May 12, 2017
2 parents 01353d0 + d0559bf commit c3f7af8
Showing 1 changed file with 107 additions and 2 deletions.
109 changes: 107 additions & 2 deletions deeplearning1/nbs/vgg16.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,23 @@

vgg_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32).reshape((3,1,1))
def vgg_preprocess(x):
"""
Subtracts the mean RGB value, and transposes RGB to BGR.
The mean RGB was computed on the image set used to train the VGG model.
Args:
x: Image array (height x width x channels)
Returns:
Image array (height x width x transposed_channels)
"""
x = x - vgg_mean
return x[:, ::-1] # reverse axis rgb->bgr


class Vgg16():
"""The VGG 16 Imagenet model"""
"""
The VGG 16 Imagenet model
"""


def __init__(self):
Expand All @@ -34,21 +45,51 @@ def __init__(self):


def get_classes(self):
"""
Downloads the Imagenet classes index file and loads it to self.classes.
The file is downloaded only if it not already in the cache.
"""
fname = 'imagenet_class_index.json'
fpath = get_file(fname, self.FILE_PATH+fname, cache_subdir='models')
with open(fpath) as f:
class_dict = json.load(f)
self.classes = [class_dict[str(i)][1] for i in range(len(class_dict))]

def predict(self, imgs, details=False):
"""
Predict the labels of a set of images using the VGG16 model.
Args:
imgs (ndarray) : An array of N images (size: N x width x height x channels).
details : ??
Returns:
preds (np.array) : Highest confidence value of the predictions for each image.
idxs (np.ndarray): Class index of the predictions with the max confidence.
classes (list) : Class labels of the predictions with the max confidence.
"""
# predict probability of each class for each image
all_preds = self.model.predict(imgs)
# for each image get the index of the class with max probability
idxs = np.argmax(all_preds, axis=1)
# get the values of the highest probability for each image
preds = [all_preds[i, idxs[i]] for i in range(len(idxs))]
# get the label of the class with the highest probability for each image
classes = [self.classes[idx] for idx in idxs]
return np.array(preds), idxs, classes


def ConvBlock(self, layers, filters):
"""
Adds a specified number of ZeroPadding and Covolution layers
to the model, and a MaxPooling layer at the very end.
Args:
layers (int): The number of zero padded convolution layers
to be added to the model.
filters (int): The number of convolution filters to be
created for each layer.
"""
model = self.model
for i in range(layers):
model.add(ZeroPadding2D((1, 1)))
Expand All @@ -57,12 +98,25 @@ def ConvBlock(self, layers, filters):


def FCBlock(self):
"""
Adds a fully connected layer of 4096 neurons to the model with a
Dropout of 0.5
Args: None
Returns: None
"""
model = self.model
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))


def create(self):
"""
Creates the VGG16 network achitecture and loads the pretrained weights.
Args: None
Returns: None
"""
model = self.model = Sequential()
model.add(Lambda(vgg_preprocess, input_shape=(3,224,224), output_shape=(3,224,224)))

Expand All @@ -82,41 +136,92 @@ def create(self):


def get_batches(self, path, gen=image.ImageDataGenerator(), shuffle=True, batch_size=8, class_mode='categorical'):
"""
Takes the path to a directory, and generates batches of augmented/normalized data. Yields batches indefinitely, in an infinite loop.
See Keras documentation: https://keras.io/preprocessing/image/
"""
return gen.flow_from_directory(path, target_size=(224,224),
class_mode=class_mode, shuffle=shuffle, batch_size=batch_size)


def ft(self, num):
"""
Replace the last layer of the model with a Dense (fully connected) layer of num neurons.
Will also lock the weights of all layers except the new layer so that we only learn
weights for the last layer in subsequent training.
Args:
num (int) : Number of neurons in the Dense layer
Returns:
None
"""
model = self.model
model.pop()
for layer in model.layers: layer.trainable=False
model.add(Dense(num, activation='softmax'))
self.compile()

def finetune(self, batches):
"""
Modifies the original VGG16 network architecture and updates self.classes for new training data.
Args:
batches : A keras.preprocessing.image.ImageDataGenerator object.
See definition for get_batches().
"""
self.ft(batches.nb_class)
classes = list(iter(batches.class_indices))
classes = list(iter(batches.class_indices)) # get a list of all the class labels

# batches.class_indices is a dict with the class name as key and an index as value
# eg. {'cats': 0, 'dogs': 1}

# sort the class labels by index according to batches.class_indices and update model.classes
for c in batches.class_indices:
classes[batches.class_indices[c]] = c
self.classes = classes


def compile(self, lr=0.001):
"""
Configures the model for training.
See Keras documentation: https://keras.io/models/model/
"""
self.model.compile(optimizer=Adam(lr=lr),
loss='categorical_crossentropy', metrics=['accuracy'])


def fit_data(self, trn, labels, val, val_labels, nb_epoch=1, batch_size=64):
"""
Trains the model for a fixed number of epochs (iterations on a dataset).
See Keras documentation: https://keras.io/models/model/
"""
self.model.fit(trn, labels, nb_epoch=nb_epoch,
validation_data=(val, val_labels), batch_size=batch_size)


def fit(self, batches, val_batches, nb_epoch=1):
"""
Fits the model on data yielded batch-by-batch by a Python generator.
See Keras documentation: https://keras.io/models/model/
"""
self.model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=nb_epoch,
validation_data=val_batches, nb_val_samples=val_batches.nb_sample)


def test(self, path, batch_size=8):
"""
Predicts the classes using the trained model on data yielded batch-by-batch.
Args:
path (string): Path to the target directory. It should contain one subdirectory
per class.
batch_size (int): The number of images to be considered in each batch.
Returns:
test_batches, numpy array(s) of predictions for the test_batches.
"""
test_batches = self.get_batches(path, shuffle=False, batch_size=batch_size, class_mode=None)
return test_batches, self.model.predict_generator(test_batches, test_batches.nb_sample)

0 comments on commit c3f7af8

Please sign in to comment.