forked from NVIDIA/apex
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
236 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,5 @@ | ||
python single_gpu_unit_test.py | ||
python -m torch.distributed.launch --nproc_per_node=2 two_gpu_unit_test.py | ||
python -m torch.distributed.launch --nproc_per_node=2 two_gpu_unit_test.py --fp64 | ||
#beware, you need a system with at least 4 gpus to test group_size<world_size | ||
python -m torch.distributed.launch --nproc_per_node=4 test_groups.py --group_size=2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
import torch | ||
import numpy as np | ||
import apex | ||
import syncbn | ||
import os | ||
import argparse | ||
import torch.optim as optim | ||
|
||
def compare(desc, inp1, inp2, error): | ||
a = inp1.clone().detach().cpu().numpy() | ||
b = inp2.clone().detach().cpu().numpy() | ||
close = np.allclose(a,b, error, error) | ||
if not close: | ||
print(desc, close) | ||
z = a - b | ||
index = (np.abs(z) >= error + error * np.abs(b)).nonzero() | ||
print("dif : ", z[index]) | ||
print("inp1 : ", a[index]) | ||
print("inp2 : ", b[index]) | ||
return close | ||
|
||
feature_size = 10 | ||
space_size = 40 | ||
batch_size = 32 | ||
|
||
|
||
from apex.parallel import DistributedDataParallel as DDP | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--local_rank", default=0, type=int) | ||
parser.add_argument("--fp16", action='store_true', default=False) | ||
parser.add_argument("--fp64", action='store_true', default=False) | ||
parser.add_argument("--group_size", default=0, type=int) | ||
args = parser.parse_args() | ||
|
||
try: | ||
args.world_size = int(os.environ['WORLD_SIZE']) | ||
except: | ||
print("This is a multi-gpu test. To run it please use 'python -m torch.distributed.launch --nproc_per_node=<num gpus> test_groups.py <more options>'") | ||
exit(1) | ||
|
||
torch.cuda.set_device(args.local_rank) | ||
torch.distributed.init_process_group(backend='nccl', init_method='env://') | ||
|
||
start = (args.local_rank%args.group_size) * batch_size//args.group_size | ||
finish = (args.local_rank%args.group_size + 1) * batch_size//args.group_size | ||
|
||
error = 1e-5 | ||
dtype = np.float32 | ||
if args.fp16: | ||
error = 1e-3 | ||
dtype = np.float16 | ||
elif args.fp64: | ||
error = 1e-8 | ||
dtype = np.float64 | ||
|
||
|
||
np.random.seed(18 + args.local_rank//args.group_size) | ||
|
||
inp = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype) | ||
grad = np.random.randn(batch_size, feature_size, space_size, space_size).astype(dtype) | ||
weight = np.random.randn(feature_size).astype(dtype) | ||
bias = np.random.randn(feature_size).astype(dtype) | ||
|
||
|
||
type_tensor = torch.cuda.FloatTensor | ||
if args.fp16: | ||
type_tensor = torch.cuda.HalfTensor | ||
if args.fp64: | ||
type_tensor = torch.cuda.DoubleTensor | ||
|
||
ref_tensor = torch.cuda.DoubleTensor | ||
|
||
inp_t = type_tensor(inp) | ||
weight_t = type_tensor(weight) | ||
bias_t = type_tensor(bias) | ||
|
||
inp_r = ref_tensor(inp.transpose(1, 0, 2, 3).reshape(feature_size, -1)) | ||
inp2_r = ref_tensor(inp) | ||
weight_r = ref_tensor(weight).view(-1, 1, 1) | ||
bias_r = ref_tensor(bias).view(-1, 1, 1) | ||
|
||
grad_output_t = type_tensor(grad) | ||
|
||
m = inp_r.mean(1) | ||
b_v = inp_r.var(1, unbiased=False) | ||
unb_v = inp_r.var(1, unbiased=True) | ||
|
||
eps = 1e-5 | ||
|
||
mean, var_biased = syncbn.welford_mean_var(inp_t) | ||
inv_std = 1.0 / torch.sqrt(var_biased + eps) | ||
|
||
bn = torch.nn.BatchNorm2d(feature_size).cuda() | ||
bn.momentum = 1.0 | ||
bn.weight.data = weight_t.clone() | ||
bn.bias.data = bias_t.clone() | ||
if args.fp16: | ||
bn.half() | ||
if args.fp64: | ||
bn.double() | ||
bn = DDP(bn) | ||
inp_bn = inp_t.clone().requires_grad_() | ||
grad_bn = grad_output_t.clone().detach() | ||
out_bn = bn(inp_bn) | ||
out_bn.backward(grad_bn) | ||
# compensating the averaging over processes done by DDP | ||
# in order to produce mathematically equivalent result | ||
# https://github.com/NVIDIA/apex/issues/134#issuecomment-458307368 | ||
for param in bn.parameters(): | ||
param.grad = param.grad / args.group_size | ||
bn_opt = optim.SGD(bn.parameters(), lr=1.0) | ||
|
||
sbn = apex.parallel.SyncBatchNorm(feature_size, process_group=apex.parallel.create_syncbn_process_group(args.group_size)).cuda() | ||
sbn.momentum = 1.0 | ||
sbn.weight.data = weight_t.clone() | ||
sbn.bias.data = bias_t.clone() | ||
if args.fp16: | ||
sbn.half() | ||
if args.fp64: | ||
sbn.double() | ||
sbn = DDP(sbn) | ||
sbn_opt = optim.SGD(sbn.parameters(), lr=1.0) | ||
inp_sbn = inp_t.clone().requires_grad_() | ||
grad_sbn = grad_output_t.clone().detach() | ||
out_sbn = sbn(inp_sbn[start:finish]) | ||
out_sbn.backward(grad_sbn[start:finish]) | ||
|
||
sbn_result = True | ||
bn_result = True | ||
|
||
if args.local_rank == 0: | ||
sbn_result = compare("comparing mean: ", mean, m, error) and sbn_result | ||
sbn_result = compare("comparing biased variance: ", var_biased, b_v, error) and sbn_result | ||
|
||
out = syncbn.batchnorm_forward(inp_t, mean, inv_std, weight_t, bias_t) | ||
out_r = weight_r * (inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) + bias_r | ||
|
||
if args.local_rank == 0: | ||
sbn_result = compare("comparing output: ", out, out_r, error) and sbn_result | ||
compare("comparing bn output: ", out_bn, out_r, error) | ||
|
||
grad_output_t = type_tensor(grad) | ||
|
||
grad_output_r = ref_tensor(grad.transpose(1, 0, 2, 3).reshape(feature_size, -1)) | ||
grad_output2_r = ref_tensor(grad) | ||
|
||
grad_bias_r = grad_output_r.sum(1) | ||
grad_weight_r = ((inp2_r - m.view(-1, 1, 1)) * torch.rsqrt(b_v.view(-1,1,1) + eps) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).sum(1) | ||
|
||
mean_dy_r = grad_output_r.mean(1) | ||
mean_dy_xmu_r = ((inp2_r - m.view(-1, 1, 1)) * grad_output2_r).transpose(1,0).contiguous().view(feature_size, -1).mean(1) | ||
|
||
grad_input_r = (grad_output2_r - mean_dy_r.view(-1, 1, 1) - (inp2_r - m.view(-1, 1, 1)) / (b_v.view(-1,1,1) + eps) * mean_dy_xmu_r.view(-1, 1, 1) ) * torch.rsqrt(b_v.view(-1,1,1) + eps) * weight_r.view(-1,1,1) | ||
|
||
mean_dy, mean_dy_xmu, grad_weight, grad_bias = syncbn.reduce_bn(grad_output_t, inp_t, mean, inv_std, weight_t) | ||
grad_input = syncbn.batchnorm_backward(grad_output_t, inp_t, mean, inv_std, weight_t, mean_dy, mean_dy_xmu) | ||
|
||
if args.local_rank == 0: | ||
sbn_result = compare("comparing bias grad: ", grad_bias, grad_bias_r, error) and sbn_result | ||
sbn_result = compare("comparing weight grad: ", grad_weight, grad_weight_r, error) and sbn_result | ||
sbn_result = compare("comparing mean_dy grad: ", mean_dy, mean_dy_r, error) and sbn_result | ||
sbn_result = compare("comparing mean_dy_xmu grad: ", mean_dy_xmu, mean_dy_xmu_r, error) and sbn_result | ||
sbn_result = compare("comparing input grad: ", grad_input, grad_input_r, error) and sbn_result | ||
compare("comparing bn input grad: ", inp_bn.grad, grad_input_r, error) | ||
|
||
if args.local_rank == 0: | ||
sbn_result = compare("comparing running_mean: ", bn.module.running_mean.data, sbn.module.running_mean.data, error) and sbn_result | ||
sbn_result = compare("comparing running_variance: ", bn.module.running_var.data, sbn.module.running_var.data, error) and sbn_result | ||
|
||
# execute by both | ||
compare("comparing layers output: ", out_bn[start:finish], out_sbn, error) and sbn_result | ||
compare("comparing layers grad_input: ", inp_bn.grad[start:finish], inp_sbn.grad[start:finish], error) and sbn_result | ||
|
||
bn_opt.step() | ||
sbn_opt.step() | ||
|
||
if args.local_rank == 0: | ||
compare("comparing bn vs sbn bias: ", bn.module.bias, sbn.module.bias, error) | ||
compare("comparing bn vs sbn weight: ", bn.module.weight, sbn.module.weight, error) | ||
|
||
|
||
if sbn_result: | ||
print("====SBN group test passed") | ||
else: | ||
print("*SBN group test failed*") |