forked from stellargraph/stellargraph
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
sktzwhj
committed
Jun 28, 2019
1 parent
58c3c0a
commit 3471ed3
Showing
1 changed file
with
155 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright 2018-2019 Data61, CSIRO | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import pytest | ||
from stellargraph.utils.saliency_maps import * | ||
import numpy as np | ||
from stellargraph.layer import GraphAttention | ||
from stellargraph import StellarGraph | ||
from stellargraph.layer import GCN | ||
from stellargraph.mapper import FullBatchNodeGenerator | ||
from keras import Model, regularizers | ||
from keras.optimizers import Adam | ||
from keras.losses import categorical_crossentropy | ||
import networkx as nx | ||
import keras.backend as K | ||
import keras | ||
|
||
|
||
def example_graph_1(feature_size=None): | ||
G = nx.Graph() | ||
elist = [(0, 1), (0, 2), (2, 3), (3, 4), (0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] | ||
G.add_nodes_from([0, 1, 2, 3, 4], label="default") | ||
G.add_edges_from(elist, label="default") | ||
|
||
# Add example features | ||
if feature_size is not None: | ||
for v in G.nodes(): | ||
G.node[v]["feature"] = np.ones(feature_size) | ||
return StellarGraph(G, node_features="feature") | ||
|
||
else: | ||
return StellarGraph(G) | ||
|
||
|
||
def create_GCN_model_dense(graph): | ||
generator = FullBatchNodeGenerator(graph, sparse=False, method="gcn") | ||
train_gen = generator.flow([0, 1], np.array([[1, 0], [0, 1]])) | ||
|
||
layer_sizes = [2, 2] | ||
gcn = GCN( | ||
layer_sizes=layer_sizes, | ||
activations=["elu", "elu"], | ||
generator=generator, | ||
dropout=0.3, | ||
kernel_regularizer=regularizers.l2(5e-4), | ||
) | ||
|
||
for layer in gcn._layers: | ||
layer._initializer = "ones" | ||
x_inp, x_out = gcn.node_model() | ||
keras_model = Model(inputs=x_inp, outputs=x_out) | ||
return gcn, keras_model, generator, train_gen | ||
|
||
|
||
def create_GCN_model_sparse(graph): | ||
generator = FullBatchNodeGenerator(graph, sparse=True, method="gcn") | ||
train_gen = generator.flow([0, 1], np.array([[1, 0], [0, 1]])) | ||
|
||
layer_sizes = [2, 2] | ||
gcn = GCN( | ||
layer_sizes=layer_sizes, | ||
activations=["elu", "elu"], | ||
generator=generator, | ||
dropout=0.3, | ||
kernel_regularizer=regularizers.l2(5e-4), | ||
) | ||
|
||
for layer in gcn._layers: | ||
layer._initializer = "ones" | ||
x_inp, x_out = gcn.node_model() | ||
keras_model = Model(inputs=x_inp, outputs=x_out) | ||
return gcn, keras_model, generator, train_gen | ||
|
||
|
||
def test_ig_saliency_map(): | ||
graph = example_graph_1(feature_size=4) | ||
base_model, keras_model_gcn, generator, train_gen = create_GCN_model_dense(graph) | ||
base_model_sp, keras_model_gcn_sp, generator_sp, train_gen_sp = create_GCN_model_sparse( | ||
graph | ||
) | ||
|
||
keras_model_gcn.compile( | ||
optimizer=Adam(lr=0.1), loss=categorical_crossentropy, weighted_metrics=["acc"] | ||
) | ||
|
||
keras_model_gcn_sp.compile( | ||
optimizer=Adam(lr=0.1), loss=categorical_crossentropy, weighted_metrics=["acc"] | ||
) | ||
|
||
weights = [ | ||
np.array( | ||
[ | ||
[0.43979216, -0.205199], | ||
[0.774606, 0.9521842], | ||
[-0.7586646, -0.41291213], | ||
[-0.80931616, 0.8148985], | ||
], | ||
dtype="float32", | ||
), | ||
np.array([0.0, 0.0], dtype="float32"), | ||
np.array([[1.0660936, -0.48291892], [1.2134176, 1.1863097]], dtype="float32"), | ||
np.array([0.0, 0.0], dtype="float32"), | ||
] | ||
|
||
keras_model_gcn.set_weights(weights) | ||
keras_model_gcn_sp.set_weights(weights) | ||
ig_dense = IntegratedGradients(keras_model_gcn, sparse=False) | ||
ig_sparse = IntegratedGradients(keras_model_gcn_sp, sparse=True) | ||
|
||
[X, _, A], y_true_all = train_gen[0] | ||
[X, _, A_index, A_sp], y_true_all = train_gen_sp[0] | ||
target_idx = 0 | ||
class_of_interest = 0 | ||
ig_node_importance_dense = ig_dense.get_node_importance( | ||
X, None, A, target_idx, class_of_interest, steps=50 | ||
) | ||
ig_node_importance_sp = ig_sparse.get_node_importance( | ||
X, A_index, A_sp, target_idx, class_of_interest, steps=50 | ||
) | ||
|
||
ig_node_importance_ref = np.array([20.91, 18.29, 11.98, 5.98, 0]) | ||
assert pytest.approx(ig_node_importance_dense, ig_node_importance_ref) | ||
assert pytest.approx(ig_node_importance_dense, ig_node_importance_sp) | ||
|
||
ig_link_importance_nz_ref = np.array( | ||
[0.2563, 0.2759, 0.2423, 0.0926, 0.1134, 0.0621, 0.0621, 0.0621] | ||
) | ||
|
||
ig_link_importance_dense = ig_dense.get_integrated_link_masks( | ||
X, None, A, target_idx, class_of_interest, A_baseline=None, steps=50 | ||
) | ||
ig_link_importance_dense_nz = ig_link_importance_dense[ | ||
np.nonzero(ig_link_importance_dense) | ||
] | ||
ig_link_importance_sp = ig_sparse.get_integrated_link_masks( | ||
X, A_index, A_sp, target_idx, class_of_interest, A_baseline=None, steps=50 | ||
) | ||
ig_link_importance_sp_nz = ig_link_importance_sp[np.nonzero(ig_link_importance_sp)] | ||
|
||
assert pytest.approx(ig_link_importance_dense_nz, ig_link_importance_nz_ref) | ||
|
||
assert pytest.approx(ig_link_importance_dense_nz, ig_link_importance_sp_nz) |