Skip to content

neubrom/Machine-Learning-A-Z.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

Machine-Learning-A-Z.

Udemy cours

Part 1 - Data Preprocessing

Part 2 - Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression

Part 3 - Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification

Part 4 - Clustering: K-Means, Hierarchical Clustering

Part 5 - Association Rule Learning: Apriori, Eclat

Part 6 - Reinforcement Learning: Upper Confidence Bound, Thompson Sampling

Part 7 - Natural Language Processing: Bag-of-words model and algorithms for NLP

Part 8 - Deep Learning: Artificial Neural Networks, Convolutional Neural Networks

Part 9 - Dimensionality Reduction: PCA, LDA, Kernel PCA

Part 10 - Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost

About

Udemy cours

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published