PaddleSeg是基于PaddlePaddle开发的语义分割库,覆盖了DeepLabv3+, U-Net, ICNet三类主流的分割模型。通过统一的配置,帮助用户更便捷地完成从训练到部署的全流程图像分割应用。
PaddleSeg具备高性能、丰富的数据增强、工业级部署、全流程应用的特点:
- 丰富的数据增强
基于百度视觉技术部的实际业务经验,内置10+种数据增强策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。
- 主流模型覆盖
支持U-Net, DeepLabv3+, ICNet三类主流分割网络,结合预训练模型和可调节的骨干网络,满足不同性能和精度的要求。
- 高性能
PaddleSeg支持多进程IO、多卡并行、跨卡Batch Norm同步等训练加速策略,结合飞桨核心框架的显存优化功能,可以大幅度减少分割模型的显存开销,更快完成分割模型训练。
- 工业级部署
基于Paddle Serving和PaddlePaddle高性能预测引擎,结合百度开放的AI能力,轻松搭建人像分割和车道线分割服务。
我们提供了一系列的使用教程,来说明如何使用PaddleSeg完成语义分割模型的训练、评估、部署。
这一系列的文档被分为快速入门、基础功能、预测部署、高级功能四个部分,四个教程由浅至深地介绍PaddleSeg的设计思路和使用方法。
A: 可能是pip源的问题,这种情况下建议切换为官方源,或者通过pip install -r requirements.txt -i
指定其他源地址。
A: 更详细数据增强文档可以参考数据增强
A: 启动训练脚本时通过命令行覆盖TRAIN.RESUME_MODEL_DIR配置为模型checkpoint目录即可, 以下代码示例第100轮重新恢复训练:
python pdseg/train.py --cfg xxx.yaml TRAIN.RESUME_MODEL_DIR /PATH/TO/MODEL_CKPT/100
A: 降低Batch size,使用Group Norm策略;请注意训练过程中当DEFAULT_NORM_TYPE
选择bn
时,为了Batch Norm计算稳定性,batch size需要满足>=2
A: 请将PaddlePaddle升级至1.5.2版本或以上。
PaddleSeg在AI Studio平台上提供了在线体验的教程,欢迎体验:
教程 | 链接 |
---|---|
U-Net宠物分割 | 点击体验 |
DeepLabv3+图像分割 | 点击体验 |
PaddleSeg特色垂类模型 | 点击体验 |
- 欢迎您通过Github Issues来提交问题、报告与建议
- 微信公众号:飞桨PaddlePaddle
- QQ群: 796771754
微信公众号 官方技术交流QQ群
-
2019.09.10
v0.1.0
我们非常欢迎您为PaddleSeg贡献代码或者提供使用建议。