Automated Stock Trading
from agents import create_env_and_train_agents, compare_and_plot_agents
from tests import test_and_visualize_agents, test_agent
from data import Data
data = Data()
data.load_data()
training_data = data.training()
total_timesteps = 10000
env, ppo_agent, a2c_agent, ddpg_agent, ensemble_agent = create_env_and_train_agents(
training_data, total_timesteps
)
n_tests = 1000
agents = {
"PPO Agent": ppo_agent,
"A2C Agent": a2c_agent,
"DDPG Agent": ddpg_agent,
"Ensemble Agent": ensemble_agent,
}
test_and_visualize_agents(env, agents, training_data, n_tests=n_tests)
agents_metrics = [
test_agent(env, agent, training_data, n_tests=n_tests, visualize=False)
for agent in agents.values()
]
compare_and_plot_agents(agents_metrics, list(agents.keys()))
from predict import PredictStockPrice
predict_stock_price = PredictStockPrice("CSCO")
predicted_prices = predict_stock_price.stock_price()