Implement a robust data processing and query resolution system using vector embeddings and advanced language models.
- Python 3.8+
- Virtual environment
- API integrations (Groq, OpenAI)
- Chunk large JSON datasets
- Convert chunks to vector embeddings
- Store embeddings in vector database
- Query and retrieve relevant information
- Langchain
- FAISS
- Sentence Transformers
- OpenAI/Groq APIs
python -m venv venv
source venv/bin/activate # Unix/macOS
venv\Scripts\activate # Windows
pip install -r requirements.txt
Create .env
file:
GROQ_API_KEY=your_groq_api_key
OPENAI_API_KEY=your_openai_api_key
- Split large JSON files into manageable chunks
- Ensure semantic coherence in chunks
- Convert chunks to embeddings
- Use FAISS for efficient similarity search
- Store document embeddings
- Support fast retrieval
- Semantic search in vector database
- Fallback to customer support if no relevant match
- Use environment variables
- Never hardcode API keys
- Implement proper access controls
u like me to elaborate on any specific section?