Python wrapper for the libcosim library. The wrapper uses the libcosimc C wrapper and the ctypes library to make OSP accessible to Python developers.
libcosimpy
is available from PyPI. Run the following command to install the package:
pip install libcosimpy
To install from the source, run the following command at the root directory of the repository:
pip install .
libcosimpy
requires ctypes to call libcosimc
functions. ctypes
is included with Python and does not have to be installed.
Import CosimExecution
from libcosimpy
from libcosimpy.CosimExecution import CosimExecution
execution = CosimExecution.from_step_size(step_size=1e3)
With a 0.01s fixed time step
execution = CosimExecution.from_osp_config_file(osp_path=f'[PATH_TO_OSP_DIRECTORY]')
execution = CosimExecution.from_ssp_file(ssp_path=f'[PATH_TO_SSP_DIRECTORY]')
FMUs can be added manually to execution. OSP and SSP config executions will import all required slaves automatically and this step is not required
Import CosimLocalSlave
from libcosimpy
from libcosimpy.CosimSlave import CosimLocalSlave
Add slave to existing execution
local_slave = CosimLocalSlave(fmu_path=f'[PATH_WITH_FILENAME_TO_FMU]', instance_name='[SOME_UNIQUE_NAME]')
slave_index = execution.add_local_slave(local_slave=local_slave)
Slave index is used for future referencing to the model
Simulations can either be run continiously for a duration
execution.simulate_until(target_time=10e9)
To simulate for 10s
Or stepped manually
execution.step()
With option for stepping multiple steps at once
execution.step(step_count=10)
List of slave indices and corresponding indices can be fetched from execution
slave_infos = list(execution.slave_infos())
List of model variables and corresponding indices can be fetched
variables = execution.slave_variables(slave_index=slave_index)
The indices can also be found by unzipping the FMU-file and inspecting the modelDescription.xml
file
Import CosimObserver
from libcosimpy
from libcosimpy.CosimObserver import CosimObserver
Observers can be used to retrieve values as Python list
observer = CosimObserver.create_last_value()
execution.add_observer(observer=observer)
# Run simulation
...
# Retrieve floating point values
values = observer.last_real_values(slave_index=[SLAVE_INDEX], # Model to monitor (integer)
variable_references=[VALUE_REFERENCE(s)]) # List of indices to monitor (integer)
Time series and file export observers are also supported
Import CosimManipulator
from libcosimpy
from libcosimpy.CosimManipulator import CosimManipulator
Manipulators are used to override values
manipulator = CosimManipulator.create_override()
execution.add_manipulator(manipulator=manipulator)
# Run simulation
...
# Override floating point values
manipulator.slave_real_values(slave_index=[SLAVE_INDEX], # Model to monitor (integer)
variable_references=[VALUE_REFERENCE(s)], # Index or list of indices to manipulate (integer)
values=[SOME_OVERRIDE_VALUE(s)]) # Floating point values used for override. Equal length to variable references
execution.step()
Scenario manipulators are also supported
Libcosimpy supports ECCO (Energy-Conservation-based Co-Simulation) algorithm based on the work in [1] for adaptively updating the step size of the simulation. The algorithm uses the law of conservation of energy between FMU models that represent power bonds from bond graph theory.
The parameters of the algorithm can be specified via the EccoParam
class:
params = EccoParams(
safety_factor=0.8,
step_size=1e-4,
min_step_size=1e-4,
max_step_size=0.01,
min_change_rate=0.2,
max_change_rate=1.5,
abs_tolerance=1e-4,
rel_tolerance=1e-4,
p_gain=0.2,
i_gain=0.15,
)
The algorithm be created via create_ecco_algorithm
, which can be used to create a new execution instance:
# Create an algorithm instance
ecco_algorithm = CosimAlgorithm.create_ecco_algorithm(params)
# Create execution
execution = CosimExecution.from_algorithm(ecco_algorithm)
The power bond between models is represented by input and output connection pair between two models:
# Indicating a power bond between models (indicated by index chassis_index and wheel_index)
ecco_algorithm.add_power_bond(
chassis_index,
chassis_v_out,
chassis_f_in,
wheel_index,
wheel_f_out,
wheel_v_in,
)
The simulation is started as usual via simulate_until
function from CosimExecution
:
execution.simulate_until(target_time=10e9)
See test_ecco_algorithm for detailed usage of ECCO algorithm.
Alternatively, ECCO algorithm can also be created via system structure file:
<OspSystemStructure xmlns="http://opensimulationplatform.com/MSMI/OSPSystemStructure" version="0.1">
...
<!-- Specify ecco algorithm -->
<Algorithm>ecco</Algorithm>
...
<Connections>
<!-- Annotate variable connection as power bond via `powerBond` attribute. Specify
causality of the variable (input or output) -->
<VariableConnection powerBond="wheelchassis">
<Variable simulator="chassis" name="velocity" causality="output"/>
<Variable simulator="wheel" name="in_vel" causality="input"/>
</VariableConnection>
<VariableConnection powerBond="wheelchassis">
<Variable simulator="wheel" name="out_spring_damper_f" causality="output"/>
<Variable simulator="chassis" name="force" causality="input"/>
</VariableConnection>
</Connections>
<!-- Specify ecco algorithm parameters -->
<EccoConfiguration>
<SafetyFactor>0.99</SafetyFactor>
<StepSize>0.0001</StepSize>
<MinimumStepSize>0.00001</MinimumStepSize>
<MaximumStepSize>0.01</MaximumStepSize>
<MinimumChangeRate>0.2</MinimumChangeRate>
<MaximumChangeRate>1.5</MaximumChangeRate>
<ProportionalGain>0.2</ProportionalGain>
<IntegralGain>0.15</IntegralGain>
<RelativeTolerance>1e-6</RelativeTolerance>
<AbsoluteTolerance>1e-6</AbsoluteTolerance>
</EccoConfiguration>
</OspSystemStructure>
Then this file can be loaded via a usual way via CosimExecution.from_osp_config_file
:
execution = CosimExecution.from_osp_config_file(osp_path="tests/data/fmi2/quarter_truck")
See Quarter truck example for detailed usage of ECCO algorithm via system structure file.
[1] Sadjina, S. and Pedersen, E., 2020. Energy conservation and coupling error reduction in non-iterative co-simulations. Engineering with Computers, 36, pp.1579-1587.
Tests can be run using the pytest
command in the terminal. libcosimc
log level for all tests can be set in the ./tests/conftest.py
file.