Skip to content

Commit

Permalink
Remove duplicate MistralForCausalLM test (Lightning-AI#1390)
Browse files Browse the repository at this point in the history
  • Loading branch information
carmocca authored May 6, 2024
1 parent 101e31d commit 90a16e4
Showing 1 changed file with 0 additions and 58 deletions.
58 changes: 0 additions & 58 deletions tests/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -415,64 +415,6 @@ def test_against_hf_mixtral():
torch.testing.assert_close(ours_y, theirs_y)


@torch.inference_mode()
@pytest.mark.parametrize(
("device", "dtype"),
[
(torch.device("cpu"), torch.float32),
pytest.param(
torch.device("cuda"),
torch.float16,
marks=[
# the reference does softmax upscaled to fp32 during attention. additionally, the final layernorm input
# is slightly different
pytest.mark.xfail(raises=AssertionError, strict=False),
RunIf(min_cuda_gpus=1),
],
),
],
)
def test_against_hf_h2o_danube(device, dtype):
torch.set_default_dtype(dtype)

ours_config = Config.from_name(
"Danube2-1.8b-chat",
padded_vocab_size=10000,
n_layer=2,
n_embd=16,
n_head=8,
n_query_groups=2,
intermediate_size=43,
)
T = 5
theirs_config = MistralConfig(
vocab_size=ours_config.padded_vocab_size,
hidden_size=ours_config.n_embd,
num_attention_heads=ours_config.n_head,
num_hidden_layers=ours_config.n_layer,
intermediate_size=ours_config.intermediate_size,
max_position_embeddings=T,
rms_norm_eps=ours_config.norm_eps,
num_key_value_heads=ours_config.n_query_groups,
rope_theta=ours_config.rope_base,
)
assert ours_config.intermediate_size == theirs_config.intermediate_size

theirs_model = MistralForCausalLM(theirs_config).to(device)
theirs_state_dict = theirs_model.state_dict()
state_dict = {}
copy_weights_hf_llama(ours_config, {}, state_dict, theirs_state_dict)
ours_model = GPT(ours_config).to(device)
ours_model.load_state_dict(state_dict)

# test end to end
x = torch.tensor([[9856, 23, 491, 1536, 304]], dtype=torch.int32, device=device)
assert x.size(1) == T
ours_y = ours_model(x)
theirs_y = theirs_model(x)["logits"].to(dtype) # HF converts logits to float
torch.testing.assert_close(ours_y, theirs_y)


@torch.inference_mode()
@pytest.mark.parametrize(
("device", "dtype"),
Expand Down

0 comments on commit 90a16e4

Please sign in to comment.