Skip to content

osamaalschame/Road-scene-recognition-for-blind-people

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Road Scene Recognition for Blind People

A computer vision system that combines YOLO segmentation with Monodepth2 distance estimation to assist visually impaired individuals in understanding road scenes. This project runs on Python 3.7 and above.

⚙️ Setup

Install the required dependencies using pip:

pip install torch==1.8.0
pip install torchvision==0.9.0
pip install ultralytics
pip install opencv-contrib-python
pip install numpy
pip install Pillow
  1. Clone the repository to Monodepth2 folder :
git https://github.com/nianticlabs/monodepth2.git

Alternatively, install all dependencies at once using:

pip install -r requirements.txt

🖼️ Prediction

The system can process a single image, multiple images from a directory, or video input. Use the following command:

python test.py --input_path <path> --output_path <path> --segmentation_data <dataset>

Arguments

Parameter Description Type Options
--input_path Input file or directory path string - Single image: image.jpg
- Image directory: ./images_folder/images
- Video file: video.mp4
--output_path Output directory for results string e.g., ./save_out/output
--segmentation_data Dataset used for segmentation string our or mapillary

Segmentation Datasets

The project supports two different segmentation datasets with distinct class sets:

1. Mapillary Dataset Classes

  • Road
  • Lane Marking - Crosswalk
  • Sidewalk
  • Obstacle
  • Car
  • Person
  • Traffic Light-Street
  • Bike Lane
  • Bicycle
  • Traffic Light-Sidewalk
  • Pedestrian Area

2. Our Dataset Classes

  • Bike
  • Bikelane
  • Car
  • Crosswalk
  • E-Scooter
  • Obstacle
  • Person
  • Road
  • Sidewalk
  • Stairs
  • Traffic Light

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages