- Exploratory Data Analysis
- Data Visualization
- Create re-useable datascience portfolios.
- Explore various machine learning algoirthms.
- Explore Big Data Tools
bash Anaconda-2.3.0-Linux-x86.sh
Anaconda conveniently installs Python, the Jupyter Notebook, and other commonly used packages for scientific computing and data science [http://jupyter.readthedocs.io/en/latest/install.html#id3]. If your anaconda does not have Jupyter Notebook, you install via:
- pip3 install --upgrade pip
- pip3 install jupyter (Use pip if using legacy Python 2.)
- Done.
- pip install jupyterthemes
You can play around with the themes: https://github.com/dunovank/jupyter-themes
- Select a theme and more e.g.
jt -t onedork -tfs 12 -tf loraserif -nf exosans -alt
Python codes and comments
- Go to www.python.org and install python 2.x or 3.x
- Go to cmd promt and set PATH (e.g. for 2.7)
setx PATH "c:\Python27"
- Open a new cmd instant and type
python --version
- Done.
- Run Eclipse in Adminstration mode.
- Go to Eclipse Market Place (Help > Eclipse Market Place)
- Search for "PyDev" and install
- Set PATH for Python Interpreters (Windows > Preferences > PyDev > Interpreters > Python Interpreter) "Click" New... Interpreter Name: Python 2.7 Interpreter Executable: c:\Python27\python.exe
- Done.
https://medium.com/@josemarcialportilla/installing-scala-and-apache-spark-on-mac-os-837ae57d283f
https://medium.com/@josemarcialportilla/installing-scala-and-spark-on-windows-249632e6b83b