Skip to content

pahal2007/cs224n-Squad-Project

This branch is up to date with priya-dwivedi/cs224n-Squad-Project:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

e2ffa5d · Mar 28, 2018

History

11 Commits
Mar 28, 2018
Mar 28, 2018
Mar 19, 2018
Mar 13, 2018
Mar 19, 2018
Mar 19, 2018
Mar 28, 2018
Mar 15, 2018
Mar 19, 2018
Mar 19, 2018
Mar 19, 2018

Repository files navigation

cs224n-Squad-Project

This repository has the code to run the model my team built for the SQUaD dataset

Running the code

  • Please run ./get_started.sh to download the SQuAD dataset and GloVE Vectors

  • requirements.txt is used by get_started.sh to install requirements. Once the script is done running, you will have a new directory data with the train and dev json files for SQuAD datset. And another empty folder experiments that will eventually have the results from your experiments.

  • To run code please run main.py in code. The settings to run BIDAF model are:

python code/main.py --experiment_name=bidaf_best --dropout=0.15 --batch_size=60 --hidden_size_encoder=150 --embedding_size=100 --do_char_embed=False --add_highway_layer=True --rnet_attention=False --bidaf_attention=True --answer_pointer_RNET=False --smart_span=True --hidden_size_modeling=150 --mode=train
  • The settings to run the RNET model are:
python code/main.py --experiment_name=rnet_best --dropout=0.20 --batch_size=20 --hidden_size_encoder=200 --embedding_size=300 --do_char_embed=False --add_highway_layer=False --rnet_attention=True --bidaf_attention=False --answer_pointer_RNET=True --smart_span=True--mode=official_eval \
--json_in_path=data/tiny-dev.json \
--json_out_path=predictions_rnet.json \
--ckpt_load_dir=experiments/rnet_best/best_checkpoint
  • Once you run the models, you will have a new folder by the name experiments which will have the results from your code runs

  • To start tensorboard, please run the following commands:

cd experiments # Go to experiments directory
tensorboard --logdir=. --port=5678 # Start TensorBoard

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 91.8%
  • Python 8.2%