Skip to content

pakrentos/for-hw-1

Repository files navigation

FoR Homework 1

Nikita Smirnov BS18-RO

Description of the robot:

image-20201103103057770

6 d.o.f

image-20201103103141668

Kinematic Scheme

image-20201103104341588

5 links (in schematic representation). Near each link (including 2 real links ) depicted their size.

6 joints. Last 3 joint can be represented as prizmatic joint or wrist.

Formuals of FK

$$ \begin{bmatrix} c2c3 && c2s3 && -s2 && x \\ c3s1s2 - c1s3 && c1c3 + s1s2s3 && c2s1 && y \\ c1c3s2 + s1s3 && -c3s1 + c1s2s3 && c1c2 && z \\ 0 && 0&& 0&& 1 \end{bmatrix} = T^0_6 $$

3 angles (a1, a2, a3) and 3 coordinates (x, y, z).

To find angles: $$ a_1 = atan2(T_{23}, T_{33})\ if\ c2\ne 0 \ a_2 = atan2(-T_{13}, T_{11}|T_{12}) \ a_3 = atan2(T_{12}, T_{11}) \ if\ c2\ne 0 $$ Way to find coordinates is obvious

IK explanation

$$ \left[Tz(670)^{-1}\times T\times Tx^{-1}(215)\right][1:3, 4] = T_{123}[1:3, 4] $$

Using this we find q1, q2, q3 using geometrical method. $$ T_{123}^{-1}Tz(670)^{-1}\times T\times Tx^{-1}(215) = T_{456} $$ $$ T_{456} = \left( \begin{array}{cccc} \text{c5} & \text{s5} \text{s6} & -\text{c6} \text{s5} & 0 \ \text{s4} \text{s5} & \text{c4} \text{c6}-\text{c5} \text{s4} \text{s6} & \text{c4} \text{s6}+\text{c5} \text{c6} \text{s4} & 0 \ \text{c4} \text{s5} & -\text{c4} \text{c5} \text{s6}-\text{c6} \text{s4} & \text{c4} \text{c5} \text{c6}-\text{s4} \text{s6} & 0 \ 0 & 0 & 0 & 1 \ \end{array} \right) $$

Knowing this, I've applied algo similar to finding FK.

Github

https://github.com/pakrentos/for-hw-1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages