Stars
python金融风控评分卡模型和数据分析微专业课包含《python信用评分卡建模(附代码)》,《python风控建模实战lendingClub》,《金融现金贷用户数据分析和画像》三套课程系列,共计250节课左右,录制时间超过3年,定期更新。这套微专业课程是互联网上最全,最专业的python信贷建模教程。
本项目为量化开源课程,可以帮助人们快速掌握量化金融知识以及使用Python进行量化开发的能力。
招商银行信用卡中心 消费金融场景下的用户购买预测 rank1
微信、支付宝、通联支付、拉卡拉、PayPal、Apple 的Go版本SDK。【极简、易用的聚合支付SDK】
Code for our Paper "All in an Aggregated Image for In-Image Learning"
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
We release dataset collected for our research, code that implement neural network models described in the paper, and scripts to reproduce all of our results, and visualization tool for visualize da…
[CVPR 2024] Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. Foundation Model for Monocular Depth Estimation
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
[ICCV 2019] Monocular depth estimation from a single image
Code for robust monocular depth estimation described in "Ranftl et. al., Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, TPAMI 2022"
Python workflow for generating benchmark datasets and machine learning models from the MIMIC-IV-ED database.
OpenMMLab Pose Estimation Toolbox and Benchmark.
An implementation of the paper "Estimating skeleton-based gait abnormality index by sparse deep auto-encoder"
Limp Detection in Leg using OpenCV and MediaPipe with Motion Capture
[CVPR2023] Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation
iDisc: Internal Discretization for Monocular Depth Estimation [CVPR 2023]
An implementation of the paper "Skeleton-based abnormal gait detection"
[CVPR 2024 - Oral, Best Paper Award Candidate] Marigold: Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation
Small Python utility to compare and visualize the output of various stereo depth estimation algorithms
To Improve Depth Estimation Using Oak-D Pro Camera
Python scripts performing stereo depth estimation using the CREStereo model in ONNX.