Skip to content

Commit

Permalink
New global TQDM_BAR_FORMAT (ultralytics#10211)
Browse files Browse the repository at this point in the history
* New global TQDM_BAR_FORMAT

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
glenn-jocher and pre-commit-ci[bot] authored Nov 18, 2022
1 parent 74b3886 commit 0322bb3
Show file tree
Hide file tree
Showing 9 changed files with 35 additions and 33 deletions.
6 changes: 3 additions & 3 deletions classify/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,8 @@
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel
from utils.dataloaders import create_classification_dataloader
from utils.general import (DATASETS_DIR, LOGGER, WorkingDirectory, check_git_status, check_requirements, colorstr,
download, increment_path, init_seeds, print_args, yaml_save)
from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_status,
check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save)
from utils.loggers import GenericLogger
from utils.plots import imshow_cls
from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP,
Expand Down Expand Up @@ -174,7 +174,7 @@ def train(opt, device):
trainloader.sampler.set_epoch(epoch)
pbar = enumerate(trainloader)
if RANK in {-1, 0}:
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
for i, (images, labels) in pbar: # progress bar
images, labels = images.to(device, non_blocking=True), labels.to(device)

Expand Down
5 changes: 3 additions & 2 deletions classify/val.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,8 @@

from models.common import DetectMultiBackend
from utils.dataloaders import create_classification_dataloader
from utils.general import LOGGER, Profile, check_img_size, check_requirements, colorstr, increment_path, print_args
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
increment_path, print_args)
from utils.torch_utils import select_device, smart_inference_mode


Expand Down Expand Up @@ -100,7 +101,7 @@ def run(
n = len(dataloader) # number of batches
action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
bar = tqdm(dataloader, desc, n, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', position=0)
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
for images, labels in bar:
with dt[0]:
Expand Down
10 changes: 5 additions & 5 deletions segment/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,10 +46,10 @@
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.downloads import attempt_download, is_url
from utils.general import (LOGGER, check_amp, check_dataset, check_file, check_git_status, check_img_size,
check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, one_cycle,
print_args, print_mutation, strip_optimizer, yaml_save)
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_status,
check_img_size, check_requirements, check_suffix, check_yaml, colorstr, get_latest_run,
increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
labels_to_image_weights, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
from utils.loggers import GenericLogger
from utils.plots import plot_evolve, plot_labels
from utils.segment.dataloaders import create_dataloader
Expand Down Expand Up @@ -277,7 +277,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
LOGGER.info(('\n' + '%11s' * 8) %
('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
if RANK in {-1, 0}:
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------
# callbacks.run('on_train_batch_start')
Expand Down
8 changes: 4 additions & 4 deletions segment/val.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,9 +42,9 @@
from models.common import DetectMultiBackend
from models.yolo import SegmentationModel
from utils.callbacks import Callbacks
from utils.general import (LOGGER, NUM_THREADS, Profile, check_dataset, check_img_size, check_requirements, check_yaml,
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
scale_boxes, xywh2xyxy, xyxy2xywh)
from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, box_iou
from utils.plots import output_to_target, plot_val_study
from utils.segment.dataloaders import create_dataloader
Expand Down Expand Up @@ -237,7 +237,7 @@ def run(
loss = torch.zeros(4, device=device)
jdict, stats = [], []
# callbacks.run('on_val_start')
pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
# callbacks.run('on_val_batch_start')
with dt[0]:
Expand Down
11 changes: 6 additions & 5 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,10 +47,11 @@
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.downloads import attempt_download, is_url
from utils.general import (LOGGER, check_amp, check_dataset, check_file, check_git_status, check_img_size,
check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_status,
check_img_size, check_requirements, check_suffix, check_yaml, colorstr, get_latest_run,
increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
yaml_save)
from utils.loggers import Loggers
from utils.loggers.comet.comet_utils import check_comet_resume
from utils.loss import ComputeLoss
Expand Down Expand Up @@ -275,7 +276,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
pbar = enumerate(train_loader)
LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
if RANK in {-1, 0}:
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
callbacks.run('on_train_batch_start')
Expand Down
4 changes: 2 additions & 2 deletions utils/autoanchor.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from tqdm import tqdm

from utils import TryExcept
from utils.general import LOGGER, colorstr
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr

PREFIX = colorstr('AutoAnchor: ')

Expand Down Expand Up @@ -153,7 +153,7 @@ def print_results(k, verbose=True):

# Evolve
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
for _ in pbar:
v = np.ones(sh)
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
Expand Down
15 changes: 7 additions & 8 deletions utils/dataloaders.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,17 +29,16 @@
from tqdm import tqdm

from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
cutout, letterbox, mixup, random_perspective)
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str,
cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy, xywh2xyxy, xywhn2xyxy,
xyxy2xywhn)
letterbox, mixup, random_perspective)
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
from utils.torch_utils import torch_distributed_zero_first

# Parameters
HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
Expand Down Expand Up @@ -494,7 +493,7 @@ def __init__(self,
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
if exists and LOCAL_RANK in {-1, 0}:
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
if cache['msgs']:
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
Expand Down Expand Up @@ -576,7 +575,7 @@ def __init__(self,
self.im_hw0, self.im_hw = [None] * n, [None] * n
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT, disable=LOCAL_RANK > 0)
pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
for i, x in pbar:
if cache_images == 'disk':
b += self.npy_files[i].stat().st_size
Expand Down Expand Up @@ -612,7 +611,7 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
desc=desc,
total=len(self.im_files),
bar_format=BAR_FORMAT)
bar_format=TQDM_BAR_FORMAT)
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
nm += nm_f
nf += nf_f
Expand Down
1 change: 1 addition & 0 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@
DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
TQDM_BAR_FORMAT = '{l_bar}{bar:10}| {n_fmt}/{total_fmt} {elapsed}' # tqdm bar format
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf

torch.set_printoptions(linewidth=320, precision=5, profile='long')
Expand Down
8 changes: 4 additions & 4 deletions val.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,9 +38,9 @@
from models.common import DetectMultiBackend
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_yaml,
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
scale_boxes, xywh2xyxy, xyxy2xywh)
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, smart_inference_mode
Expand Down Expand Up @@ -193,7 +193,7 @@ def run(
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
callbacks.run('on_val_start')
pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
callbacks.run('on_val_batch_start')
with dt[0]:
Expand Down

0 comments on commit 0322bb3

Please sign in to comment.