Skip to content

Face Detection & Age Gender & Expression & Recognition

License

Notifications You must be signed in to change notification settings

pengKiina/FaceLib

 
 

Repository files navigation

  • use for Detection, Facial Expression, Age & Gender Estimation and Recognition with PyTorch
  • this repository works with CPU and GPU(Cuda)

Installation

  • Clone and install with this command:

    https://github.com/sajjjadayobi/FaceLib.git

  • Prerequisites

    • Python 3.6+
      • PyTorch 1.4+
    • Torchvision 0.4.0+
      • OpenCV 2.0+
    • requirements.txt

1. Face Detection: RetinaFace

  • you can use these backbone networks: Resnet50, mobilenet, slim, RFB
  • for more details, you can use the documentation
  • The following example illustrates the ease of use of this package:
 from Retinaface.Retinaface import FaceDetector
 detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', device='cpu')
 boxes, scores, landmarks = detector.detect_faces(image)

WiderFace Validation Performance on a single scale When using Mobilenet for backbone

Style easy medium hard
Pytorch (same parameter with Mxnet) 88.67% 87.09% 80.99%
Pytorch (original image scale) 90.70% 88.16% 73.82%
Mxnet(original image scale) 89.58% 87.11% 69.12%

2. Face Alignment: Similar Transformation

  • you can use this module like this:

     from Retinaface.Retinaface import FaceDetector
     detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', device='cuda')
     faces, boxes, scores, landmarks = detector.detect_align(image)
  • or run on webcam and shows the result on the image

    python Retinaface/from_camera.py

  • detect_image() instead detect_faces()

  • for more details read detect_image function documentation

  • let's see a few examples

Original Aligned & Resized Original Aligned & Resized
image image image image

3. Age & Gender Estimation:

  • I used UTKFace DataSet for Age & Gender Estimation
  • you can use these backbone networks: full, tiny
  • you can use this module like this:
   from Retinaface.Retinaface import FaceDetector
   from AgeGender.Detector import AgeGender
    
   face_detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', device='cuda')
   age_gender_detector = AgeGender(name='full', weight_path='ShufflenetFull.pth', device='cuda')

   faces, boxes, scores, landmarks = face_detector.detect_align(image)
   genders, ages = age_gender_detector.detect(faces)
   print(genders, ages)
  • or run on webcam and shows the result on the image

    python AgeGender/from_camera.py

  • downlaod weight of network from google drive ShufleNet

4. Facial Expression Recognition:

  • Facial Expression Recognition using Residual Masking Network
  • face size must be (224, 224), you can fix it in FaceDetector init function with face_size=(224, 224)
  from Retinaface.Retinaface import FaceDetector
  from FacialExpression.FaceExpression import EmotionDetector
  
  face_detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', face_size=(224, 224))
  emotion_detector = EmotionDetector(name='resnet34', weight_path='resnet34.pth', device='cuda')
  
  faces, boxes, scores, landmarks = face_detector.detect_align(image)
  list_of_emotions, probab = emotion_detector.detect_emotion(faces)
  print(list_of_emotions)
  • or run on webcam and shows the result on the image

    python FacialExpression/from_camera.py

  • downlaod weight of network from google drive Expression

  • like this image:

image

5. Face Recognition: InsightFace

  • This module is a reimplementation of Arcface(paper), or Insightface(Github)
  • For models, including the PyTorch implementation of the backbone modules of IR-SE50 and MobileFacenet

Pretrained Models & Performance

  • IR-SE50
LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9952 0.9962 0.9504 0.9622 0.9557 0.9107 0.9386
  • Mobilefacenet
LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9918 0.9891 0.8986 0.9347 0.9402 0.866 0.9100
Prepare the Facebank (For testing over camera or video)
  • Provide the face images your want to detect in the data/face_bank folder, and guarantee it have a structure like following:

    data/facebank/
            ---> person_1/
                ---> img_1.jpg
            ---> person_2/
                ---> img_1.jpg
                ---> img_2.jpg
    
  • you can save a preson with 3 ways:

    • use python add_face_from_camera.py -n NAME
      • use python add_face_from_dir.py -n NAME
      • or add faces manually (just face of person not image of a person)
  • you can use this module like this for camera verification:

      python camera_verify.py -u update -m True
    
    • u argument: update FaceBank if add a new person
    • m argument: use Mobilenet for backbone
  • and use into your code:

    from InsightFace.data.config import get_config
    from InsightFace.models.Learner import face_learner
    from InsightFace.utils import update_facebank, load_facebank, special_draw
    from Retinaface.Retinaface import FaceDetector
    
    
    conf = get_config(training=False)
    detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', device=conf.device)
    conf.use_mobilfacenet = True or False
    face_rec = face_learner(conf, inference=True)
    face_rec.model.eval()
    
    if update_facebank_for_add_new_person:
        targets, names = update_facebank(conf, face_rec.model, detector)
    else:
        targets, names = load_facebank(conf)
    
    faces, boxes, scores, landmarks = detector.detect_align(image)
    results, score = face_rec.infer(conf, faces, targets)
    for idx, bbox in enumerate(boxes):
        special_draw(image, bbox, landmarks[idx], names[results[idx]+1], score[idx])
  • downlaod weight of network from google drive InsightFace
  • example of run this code:

image

Reference:

Citation:

   - Author : Sajjad Ayoubi
   - Title : FaceLib
   - Year = 2020

About

Face Detection & Age Gender & Expression & Recognition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%