- use for Detection, Facial Expression, Age & Gender Estimation and Recognition with PyTorch
- this repository works with CPU and GPU(Cuda)
-
Clone and install with this command:
https://github.com/sajjjadayobi/FaceLib.git
-
Prerequisites
- Python 3.6+
- PyTorch 1.4+
- Torchvision 0.4.0+
- OpenCV 2.0+
- requirements.txt
- Python 3.6+
- you can use these backbone networks: Resnet50, mobilenet, slim, RFB
- for more details, you can use the documentation
- The following example illustrates the ease of use of this package:
from Retinaface.Retinaface import FaceDetector
detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', device='cpu')
boxes, scores, landmarks = detector.detect_faces(image)
- downlaod weight of network from google drive RetinaFace
- you can cheche code and change it Face Detector
- based on this repository RetinaFace
Style | easy | medium | hard |
---|---|---|---|
Pytorch (same parameter with Mxnet) | 88.67% | 87.09% | 80.99% |
Pytorch (original image scale) | 90.70% | 88.16% | 73.82% |
Mxnet(original image scale) | 89.58% | 87.11% | 69.12% |
-
you can use this module like this:
from Retinaface.Retinaface import FaceDetector detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', device='cuda') faces, boxes, scores, landmarks = detector.detect_align(image)
-
or run on webcam and shows the result on the image
python Retinaface/from_camera.py
-
detect_image() instead detect_faces()
-
for more details read detect_image function documentation
-
let's see a few examples
Original | Aligned & Resized | Original | Aligned & Resized |
---|---|---|---|
- I used UTKFace DataSet for Age & Gender Estimation
- you can use these backbone networks: full, tiny
- you can use this module like this:
from Retinaface.Retinaface import FaceDetector
from AgeGender.Detector import AgeGender
face_detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', device='cuda')
age_gender_detector = AgeGender(name='full', weight_path='ShufflenetFull.pth', device='cuda')
faces, boxes, scores, landmarks = face_detector.detect_align(image)
genders, ages = age_gender_detector.detect(faces)
print(genders, ages)
-
or run on webcam and shows the result on the image
python AgeGender/from_camera.py
-
downlaod weight of network from google drive ShufleNet
- Facial Expression Recognition using Residual Masking Network
- face size must be (224, 224), you can fix it in FaceDetector init function with face_size=(224, 224)
from Retinaface.Retinaface import FaceDetector
from FacialExpression.FaceExpression import EmotionDetector
face_detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', face_size=(224, 224))
emotion_detector = EmotionDetector(name='resnet34', weight_path='resnet34.pth', device='cuda')
faces, boxes, scores, landmarks = face_detector.detect_align(image)
list_of_emotions, probab = emotion_detector.detect_emotion(faces)
print(list_of_emotions)
-
or run on webcam and shows the result on the image
python FacialExpression/from_camera.py
-
downlaod weight of network from google drive Expression
-
like this image:
- This module is a reimplementation of Arcface(paper), or Insightface(Github)
- For models, including the PyTorch implementation of the backbone modules of IR-SE50 and MobileFacenet
- IR-SE50
LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | calfw(%) | cplfw(%) | vgg2_fp(%) |
---|---|---|---|---|---|---|
0.9952 | 0.9962 | 0.9504 | 0.9622 | 0.9557 | 0.9107 | 0.9386 |
- Mobilefacenet
LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | calfw(%) | cplfw(%) | vgg2_fp(%) |
---|---|---|---|---|---|---|
0.9918 | 0.9891 | 0.8986 | 0.9347 | 0.9402 | 0.866 | 0.9100 |
-
Provide the face images your want to detect in the data/face_bank folder, and guarantee it have a structure like following:
data/facebank/ ---> person_1/ ---> img_1.jpg ---> person_2/ ---> img_1.jpg ---> img_2.jpg
-
you can save a preson with 3 ways:
- use
python add_face_from_camera.py -n NAME
- use
python add_face_from_dir.py -n NAME
- or add faces manually (just face of person not image of a person)
- use
- use
-
you can use this module like this for camera verification:
python camera_verify.py -u update -m True
- u argument: update FaceBank if add a new person
- m argument: use Mobilenet for backbone
-
and use into your code:
from InsightFace.data.config import get_config
from InsightFace.models.Learner import face_learner
from InsightFace.utils import update_facebank, load_facebank, special_draw
from Retinaface.Retinaface import FaceDetector
conf = get_config(training=False)
detector = FaceDetector(name='mobilenet', weight_path='mobilenet.pth', device=conf.device)
conf.use_mobilfacenet = True or False
face_rec = face_learner(conf, inference=True)
face_rec.model.eval()
if update_facebank_for_add_new_person:
targets, names = update_facebank(conf, face_rec.model, detector)
else:
targets, names = load_facebank(conf)
faces, boxes, scores, landmarks = detector.detect_align(image)
results, score = face_rec.infer(conf, faces, targets)
for idx, bbox in enumerate(boxes):
special_draw(image, bbox, landmarks[idx], names[results[idx]+1], score[idx])
- downlaod weight of network from google drive InsightFace
- example of run this code:
- Author : Sajjad Ayoubi
- Title : FaceLib
- Year = 2020