-
Notifications
You must be signed in to change notification settings - Fork 30
/
extract_feature.py
350 lines (287 loc) · 13.7 KB
/
extract_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from bert.graph import import_tf
from bert import modeling
from bert import tokenization
from bert.graph import optimize_graph
from bert import args
from queue import Queue
from threading import Thread
tf = import_tf(0, True)
class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
self.unique_id = unique_id
self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.input_type_ids = input_type_ids
class BertVector:
def __init__(self, batch_size=32, pooling_strategy="REDUCE_MEAN", max_seq_len=40):
"""
init BertVector
:param batch_size: Depending on your memory default is 32
"""
self.max_seq_length = max_seq_len
self.layer_indexes = args.layer_indexes
self.gpu_memory_fraction = 1
if pooling_strategy == "NONE":
pooling_strategy = args.PoolingStrategy.NONE
elif pooling_strategy == "REDUCE_MAX":
pooling_strategy = args.PoolingStrategy.REDUCE_MAX
elif pooling_strategy == "REDUCE_MEAN":
pooling_strategy = args.PoolingStrategy.REDUCE_MEAN
elif pooling_strategy == "REDUCE_MEAN_MAX":
pooling_strategy = args.PoolingStrategy.REDUCE_MEAN_MAX
self.graph_path = optimize_graph(pooling_strategy=pooling_strategy, max_seq_len=self.max_seq_length)
self.tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True)
self.batch_size = batch_size
self.estimator = self.get_estimator()
self.input_queue = Queue(maxsize=1)
self.output_queue = Queue(maxsize=1)
self.predict_thread = Thread(target=self.predict_from_queue, daemon=True)
self.predict_thread.start()
def get_estimator(self):
from tensorflow.python.estimator.estimator import Estimator
from tensorflow.python.estimator.run_config import RunConfig
from tensorflow.python.estimator.model_fn import EstimatorSpec
def model_fn(features, labels, mode, params):
with tf.gfile.GFile(self.graph_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
input_names = ['input_ids', 'input_mask', 'input_type_ids']
output = tf.import_graph_def(graph_def,
input_map={k + ':0': features[k] for k in input_names},
return_elements=['final_encodes:0'])
return EstimatorSpec(mode=mode, predictions={
'encodes': output[0]
})
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction
config.log_device_placement = False
config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
return Estimator(model_fn=model_fn, config=RunConfig(session_config=config),
params={'batch_size': self.batch_size})
def predict_from_queue(self):
prediction = self.estimator.predict(input_fn=self.queue_predict_input_fn, yield_single_examples=False)
for i in prediction:
self.output_queue.put(i)
def encode(self, sentence):
self.input_queue.put(sentence)
prediction = self.output_queue.get()
return prediction
def queue_predict_input_fn(self):
return (tf.data.Dataset.from_generator(
self.generate_from_queue,
output_types={'unique_ids': tf.int32,
'input_ids': tf.int32,
'input_mask': tf.int32,
'input_type_ids': tf.int32},
output_shapes={
'unique_ids': (1,),
'input_ids': (None, self.max_seq_length),
'input_mask': (None, self.max_seq_length),
'input_type_ids': (None, self.max_seq_length)}))
def generate_from_queue(self):
while True:
features = list(self.convert_examples_to_features(seq_length=self.max_seq_length, tokenizer=self.tokenizer))
yield {
'unique_ids': [f.unique_id for f in features],
'input_ids': [f.input_ids for f in features],
'input_mask': [f.input_mask for f in features],
'input_type_ids': [f.input_type_ids for f in features]
}
def input_fn_builder(self, features, seq_length):
"""Creates an `input_fn` closure to be passed to Estimator."""
all_unique_ids = []
all_input_ids = []
all_input_mask = []
all_input_type_ids = []
for feature in features:
all_unique_ids.append(feature.unique_id)
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_input_type_ids.append(feature.input_type_ids)
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
num_examples = len(features)
# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"unique_ids":
tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32),
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"input_type_ids":
tf.constant(
all_input_type_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
})
d = d.batch(batch_size=batch_size, drop_remainder=False)
return d
return input_fn
def model_fn_builder(self, bert_config, init_checkpoint, layer_indexes):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
unique_ids = features["unique_ids"]
input_ids = features["input_ids"]
input_mask = features["input_mask"]
input_type_ids = features["input_type_ids"]
jit_scope = tf.contrib.compiler.jit.experimental_jit_scope
with jit_scope():
model = modeling.BertModel(
config=bert_config,
is_training=False,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=input_type_ids)
if mode != tf.estimator.ModeKeys.PREDICT:
raise ValueError("Only PREDICT modes are supported: %s" % (mode))
tvars = tf.trainable_variables()
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
init_checkpoint)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
all_layers = model.get_all_encoder_layers()
predictions = {
"unique_id": unique_ids,
}
for (i, layer_index) in enumerate(layer_indexes):
predictions["layer_output_%d" % i] = all_layers[layer_index]
from tensorflow.python.estimator.model_fn import EstimatorSpec
output_spec = EstimatorSpec(mode=mode, predictions=predictions)
return output_spec
return model_fn
def convert_examples_to_features(self, seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
features = []
input_masks = []
examples = self._to_example(self.input_queue.get())
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
# if the sentences's length is more than seq_length, only use sentence's left part
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
# Where "input_ids" are tokens's index in vocabulary
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
input_masks.append(input_mask)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("unique_id: %s" % (example.unique_id))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info(
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
yield InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids)
def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
@staticmethod
def _to_example(sentences):
import re
"""
sentences to InputExample
:param sentences: list of strings
:return: list of InputExample
"""
unique_id = 0
for ss in sentences:
line = tokenization.convert_to_unicode(ss)
if not line:
continue
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
yield InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)
unique_id += 1
if __name__ == "__main__":
import time
bert = BertVector()
while True:
question = input('question: ')
start = time.time()
vectors = bert.encode([question])
print(str(vectors))
#print(f'predict time:----------{time.time() - start}')