Skip to content

Commit

Permalink
Merge pull request opencv#17998 from dkurt:dnn_fix_ngraph
Browse files Browse the repository at this point in the history
  • Loading branch information
alalek committed Aug 3, 2020
2 parents d695208 + cf8f65d commit a285339
Show file tree
Hide file tree
Showing 4 changed files with 46 additions and 27 deletions.
2 changes: 1 addition & 1 deletion modules/dnn/src/layers/fully_connected_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -565,7 +565,7 @@ class FullyConnectedLayerImpl CV_FINAL : public InnerProductLayer
}
else
{
std::vector<size_t> data = {(size_t)ieInpNode->get_shape()[0], (size_t)blobs[0].size[1]};
std::vector<int64_t> data = {(int64_t)ieInpNode->get_shape()[0], (int64_t)blobs[0].size[1]};
auto new_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, data.data());
auto inp = std::make_shared<ngraph::op::v1::Reshape>(ieInpNode, new_shape, true);

Expand Down
3 changes: 2 additions & 1 deletion modules/dnn/src/layers/permute_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -385,8 +385,9 @@ class PermuteLayerImpl CV_FINAL : public PermuteLayer
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
std::vector<int64_t> order(_order.begin(), _order.end());
auto tr_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape({_order.size()}), _order.data());
ngraph::Shape({order.size()}), order.data());
auto transpose = std::make_shared<ngraph::op::Transpose>(ieInpNode, tr_axes);
return Ptr<BackendNode>(new InfEngineNgraphNode(transpose));
}
Expand Down
29 changes: 18 additions & 11 deletions modules/dnn/test/test_layers.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1108,6 +1108,9 @@ TEST_P(Layer_Test_Convolution_DLDT, Accuracy)
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);

if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");

Expand All @@ -1118,9 +1121,8 @@ TEST_P(Layer_Test_Convolution_DLDT, Accuracy)
else
FAIL() << "Unknown backendId";

std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt"));
Net net = readNet(_tf("layer_convolution" + suffix + ".xml"), _tf("layer_convolution" + suffix + ".bin"));
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));

Mat inp = blobFromNPY(_tf("blob.npy"));

Expand All @@ -1140,14 +1142,20 @@ TEST_P(Layer_Test_Convolution_DLDT, Accuracy)

std::vector<int> outLayers = net.getUnconnectedOutLayers();
ASSERT_EQ(net.getLayer(outLayers[0])->name, "output");
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution");
else
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Add");
}

TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8)
{
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);

if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");

Expand All @@ -1164,12 +1172,10 @@ TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8)
randu(inputs[0], 0, 255);
inputs[0].convertTo(inputs[1], CV_32F);

std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";

Mat outs[2];
for (int i = 0; i < 2; ++i)
{
Net net = readNet(_tf("layer_convolution" + suffix + ".xml"), _tf("layer_convolution" + suffix + ".bin"));
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
net.setInput(inputs[i]);
Expand All @@ -1185,6 +1191,9 @@ TEST_P(Layer_Test_Convolution_DLDT, multithreading)
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);

if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");

Expand All @@ -1195,9 +1204,8 @@ TEST_P(Layer_Test_Convolution_DLDT, multithreading)
else
FAIL() << "Unknown backendId";

std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
std::string xmlPath = _tf("layer_convolution" + suffix + ".xml");
std::string binPath = _tf("layer_convolution" + suffix + ".bin");
std::string xmlPath = _tf("layer_convolution.xml");
std::string binPath = _tf("layer_convolution.bin");
Net firstNet = readNet(xmlPath, binPath);
Net secondNet = readNet(xmlPath, binPath);
Mat inp = blobFromNPY(_tf("blob.npy"));
Expand Down Expand Up @@ -1256,8 +1264,7 @@ TEST_P(Test_DLDT_two_inputs_3dim, as_IR)
int secondInpType = get<1>(GetParam());
Target targetId = get<2>(GetParam());

std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
Net net = readNet(_tf("net_two_inputs" + suffix + ".xml"), _tf("net_two_inputs.bin"));
Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin"));
std::vector<int> inpSize = get<3>(GetParam());
Mat firstInp(3, inpSize.data(), firstInpType);
Mat secondInp(3, inpSize.data(), secondInpType);
Expand Down
39 changes: 25 additions & 14 deletions modules/dnn/test/test_misc.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -440,12 +440,14 @@ TEST_P(Async, model_optimizer_pipeline_set_and_forward_single)
const Backend backendId = get<0>(get<1>(GetParam()));
const Target targetId = get<1>(get<1>(GetParam()));

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);

if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");

const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
const std::string& model = findDataFile("dnn/layers/layer_convolution.bin");
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml");

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
Expand Down Expand Up @@ -499,12 +501,14 @@ TEST_P(Async, model_optimizer_pipeline_set_and_forward_all)
const Backend backendId = get<0>(get<1>(GetParam()));
const Target targetId = get<1>(get<1>(GetParam()));

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);

if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");

const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
const std::string& model = findDataFile("dnn/layers/layer_convolution.bin");
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml");

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
Expand Down Expand Up @@ -673,9 +677,11 @@ TEST_P(Test_Model_Optimizer, forward_two_nets)
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());

const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);

const std::string& model = findDataFile("dnn/layers/layer_convolution.bin");
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml");

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
Expand Down Expand Up @@ -712,12 +718,14 @@ TEST_P(Test_Model_Optimizer, readFromBuffer)
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);

if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");

const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
const std::string& weightsFile = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
const std::string& modelFile = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
const std::string& weightsFile = findDataFile("dnn/layers/layer_convolution.bin");
const std::string& modelFile = findDataFile("dnn/layers/layer_convolution.xml");

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
Expand Down Expand Up @@ -765,8 +773,11 @@ TEST_P(Test_Model_Optimizer, flexible_inputs)
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());

const std::string& model = findDataFile("dnn/layers/layer_convolution_fp16.bin");
const std::string& proto = findDataFile("dnn/layers/layer_convolution_fp16.xml");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);

const std::string& model = findDataFile("dnn/layers/layer_convolution.bin");
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml");

if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
Expand Down

0 comments on commit a285339

Please sign in to comment.