Skip to content

phiyodr/bikit-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

bikit-models

Please visit Building Inspection Toolkit for further details on how to use these models.

New Usage daclnets

from bikit_models.daclnet import build_dacl
from bikit_models.utils import process_img_daclnet, make_prediciton

img_path = "assets/image_0000468_crop_0000001.png"
cp_path = "models/checkpoints/codebrim-classif-balancedcodebrim-classif-balanced_ResNet50_hta.pth"
model, cat_to_name = build_dacl(cp_path=cp_path)
img = process_img_daclnet(img_path)
make_prediciton(model, img, cat_to_name)

New Usage vistranet_0

from bikit_models.vistranet_0 import build_vistra_0
from bikit_models.utils import process_img_vistranet, make_prediciton

img_path = "assets/image_0000468_crop_0000001.png"
cp_path = "models/checkpoints/codebrim-classif-balanced/codebrim-classif-balanced_ViT_s8_0.pth"
model, cat_to_name = build_vistra_0(cp_path=cp_path)
img = process_img_vistranet(img_path)
make_prediciton(model, img, cat_to_name)

New Usage vistranet_1

from bikit_models.vistranet_1 import build_vistra_1
from bikit_models.utils import process_img_vistranet, make_prediciton

img_path = "assets/image_0000468_crop_0000001.png"
cp_path = "models/checkpoints/codebrim-classif-balanced/codebrim-classif-balanced_ViT_s8_1.pth"
model, cat_to_name = build_vistra_1(cp_path=cp_path)
img = process_img_vistranet(img_path)
make_prediciton(model, img, cat_to_name, activation=False) # activation is already performed 

Old Usage

from bikit.utils import load_model, load_img_from_url
from bikit.models import make_prediction

img = load_img_from_url("https://github.com/phiyodr/building-inspection-toolkit/raw/master/bikit/data/11_001990.jpg")
model, metadata = load_model("codebrim-classif-balanced_MobileNetV3-Large_hta", add_metadata=True)
prob, pred = make_prediction(model, img, metadata, print_predictions=True, preprocess_image=True)

Performances of available models

Cp-name TrainedOn TrainCropSize MetricsReportedOn ExactMatchRatio F1 Precision Recall Accuracy AUROC Recall-NoDamage Recall-Crack Recall-Efflorescence Recall-Spalling Recall-BarsExposed Recall-Rust Scaling Other
codebrim-classif_MobileNetV3-Large_hta codebrim-classif 224 itself 70.57 83.04 86.27 81.07 92.25 96.67 94 84 82.67 65.1 84.67 76
codebrim-classif-balanced_ViT_s8_1 codebrim-classif-balanced 224 itself 79.59 89.82 91.3 88.54 86.65 94 89.33 85.91 84 90 88
codebrim-classif-balanced_ViT_s8_0 codebrim-classif-balanced 224 itself 77.53 89.62 89.65 89.76 86.05 95.33 92 84.56 90.67 90.67 85.33
codebrim-classif-balanced_ResNet50_hta codebrim-classif-balanced 224 itself 71.36 84.13 85.33 83.2 92.59 96.99 93.33 85.33 77.18 84.67 85.33 73.33
codebrim-classif-balanced_MobileNetV3-Large_hta codebrim-classif-balanced 224 itself 68.99 82.77 84.36 81.75 91.98 96.45 94 80 72.48 84.67 86.67 72.67
codebrim-classif-balanced_EfficientNetV1-B0_hta codebrim-classif-balanced 224 itself 65.66 81 80.33 82.52 90.88 96.06 90 77.33 67.79 88.67 92.67 78.67
dacl1k_MobileNetV3-Large_dhb dacl1k 512 itself 31.51 66.94 76.24 60.49 78.54 83.41 73.91 42.50 52.27 68.89 56.60 68.75
dacl1k_MobileNetV3-Large_hta dacl1k 224 itself 23.29 56.94 75.72 46.95 76.18 82.58 65.22 22.5 43.18 44.44 35.85 70.54
mcds_bikit_MobileNetV3-Large_hta mcds_bikit 224 itself 54.44 65.52 79.48 59.44 90.65 93.67 70 76.67 90 58.89 21.67 68.33 43.33 46.67
mcds_bikit_EfficientNetV1-B0_dha mcds_bikit 224 itself 51.85 64.55 77.72 58.06 90.23 91.91 46.67 73.33 80 61.11 38.33 75 43.33 46.67
mcds_bikit_ResNet50_dha mcds_bikit 224 itself 48.15 62.33 80.88 54.93 89.81 93.07 66.67 73.33 86.67 44.44 23.33 65 36.67 43.33
meta2_MobileNetV3-Large_hta meta2 224 itself 70.41 82.99 87.43 80.1 92.39 96.5 94.44 88.33 70.39 82.22 68.57 76.67
meta2+dacl1k_MobileNetV3-Large_dhb meta2+dacl1k 512 dacl1k 31.51 67.08 82.09 57.88 80.44 85.77 65.22 31.25 54.55 65.56 56.60 74.11
meta2+dacl1k_MobileNetV3-Large_hta meta2+dacl1k 224 itself 49.22 66.48 72.17 66.48 85.45 89.27 32.35 83.13 61.8 78.33 65.02 78.26
meta3_MobileNetV3-Large_hta meta3 224 itself 81.52 85.28 90.84 81.2 95.31 98.03 97.29 93.75 65.92 82.59 71.43 76.19
meta3+dacl1k_MobileNetV3-Large_dhb meta3+dacl1k 512 dacl1k 32.42 68.94 83.03 60.24 81.13 84.93 67.39 36.25 50.00 73.33 60.38 74.11
meta3+dacl1k_MobileNetV3-Large_hta meta3+dacl1k 224 itself 75.22 82.14 90.41 76.18 93.4 96.85 93.54 85.54 60.67 78.33 65.4 73.6
meta4_MobileNetV3-Large_hta meta4 224 itself 77.84 79.4 87.68 74.85 93.01 97.69 99.17 60.82 67.6 81.48 69.52 70.48
meta4+dacl1k_MobileNetV3-Large_hta meta4+dacl1k 224 itself 76.81 76.44 86.19 71.11 92.76 97.4 98.42 61.85 59.18 73.61 59.7 73.91

** The performance of the models trained on codebrim-classif-balanced dataset in the bikit-models repo differ from the original bikit paper due to sanity changes in bikit. The original models from the paper can be found at dacl-demo repo.

About

PyTorch models for Building Inspection Toolkit

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published