This is yet another implementation for the classification of the MNIST handwritten digit dataset. It is implemented as part of a homework exercise for [088] Computational Intelligence course of ECE Department, AUTh
- Python (3.6 or higher, preferably 3.9)
- venv
- Poetry
To install them on variant Linux distributions follow the instructions below
$ sudo dnf upgrade --refresh # updates installed packages and repositories metadata
$ sudo dnf install python python3-pip python3-virtualenv python3-devel poetry
$ sudo apt update && sudo apt upgrade # updates installed packages and repositories metadata
$ sudo apt install python3 python3-pip python3.9-venv python3.9-dev python3-poetry # ubuntu still offers python2 in its repositories
- a. Create and activate a virtual environment
$ python3.9 -m venv venv $ source venv/bin/activate ``` b. Use poetry to create and activate your virtual environment ```shell $ poetry shell
- Install necessary python dependencies
$ pip install -r requirements.txt # if using pip $ poetry install # if using poetry
- Run the application
$ python3 -m multilayer_perceptron_classification
- (Optionally) You can also define some cli parameters to control the batch size, the number of epochs
or whether to save the model to file. To do so, you can run the application like so
$ python3 -m multilayer_perceptron_classification --batch-size=N --epochs=M --save
- (Optionally) You can also create a yaml file with the aforementioned parameters and just run the application like
$ python3 -m multilayer_perceptron_classification -f <file_name>.yaml