Skip to content
/ MFN Public

[AAAI 2018] Memory Fusion Network for Multi-view Sequential Learning

License

Notifications You must be signed in to change notification settings

pliang279/MFN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b0453fb · Aug 4, 2020

History

24 Commits
Dec 21, 2018
Dec 21, 2018
Dec 21, 2018
Feb 15, 2019
Dec 21, 2018
Aug 19, 2019
Aug 4, 2020
Dec 21, 2018
Dec 21, 2018
Dec 21, 2018

Repository files navigation

Memory-Fusion-Network

Code for Memory Fusion Network (MFN), AAAI 2018, https://arxiv.org/abs/1802.00927

This repository includes data, code and pretrained models for the AAAI 2018 paper, "Memory Fusion Network for Multi-view Sequential Learning"

Data: we have included preprocessed data from the CMU-MOSI dataset for multimodal sentiment analysis. These are found in data/X_train.h5, data/y_train.h5 etc. To be consistent with previously reported results on the CMU-MOSI dataset, we used the exact same dataset as used in the baselines. We are in the process of integrate the model with the latest version of the CMU-MOSI and CMU-MOSEI datasets which can be found at https://github.com/A2Zadeh/CMU-MultimodalSDK/

Code: training code for both MFN and EF-LSTM (early fusion LSTM) are included in test_mosi.py

Pretrained models: pretrained MFN models optimized for MAE (Mean Absolute Error) and binary classification accuracy can be found in best/mfn_mae.pt, and best/mfn_acc.pt

Installation

First check that the requirements are satisfied:
Python 2.7
PyTorch 0.4.0
numpy 1.13.3
sklearn 0.20.0

If not, these packages can be installed using pip.

The next step is to clone the repository:

git clone https://github.com/pliang279/Memory-Fusion-Network.git

You can run the code with

python test_mosi.py

in the command line. This loads the pretrained model best/mfn_mae.pt which gives a CMU-MOSI test set MAE of 0.954, and the pretrained model best/mfn_acc.pt which gives a CMU-MOSI test set binary classification accuracy of 77.4%.

Next steps: we are in the process of integrating the model with the latest version of the CMU-MOSI and CMU-MOSEI datasets which can be found at https://github.com/A2Zadeh/CMU-MultimodalSDK/

If you use this code, please cite our paper:

@article{zadeh2018memory,
  title={Memory Fusion Network for Multi-view Sequential Learning},
  author={Zadeh, Amir and Liang, Paul Pu and Mazumder, Navonil and Poria, Soujanya and Cambria, Erik and Morency, Louis-Philippe},
  journal={Proceedings of the Thirty-Second {AAAI} Conference on Artificial Intelligence},
  year={2018}
}

Related papers and repositories building upon these datasets:
CMU-MOSEI dataset: paper, code
Multi-Attention Recurrent Network: paper, code
Graph-MFN: paper, code
Multimodal Transformer: paper, code
Multimodal Cyclic Translations: paper, code

About

[AAAI 2018] Memory Fusion Network for Multi-view Sequential Learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages