Skip to content

This project fine-tunes the Qwen2-1.5B model for Arabic language tasks using Quantized LoRA (QLoRA).

License

Notifications You must be signed in to change notification settings

prakash-aryan/qwen-arabic-project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Qwen Arabic Fine-tuning Project

This project fine-tunes the Qwen2-1.5B model for Arabic language tasks using Quantized LoRA (QLoRA).

Qwen-Arabic Evaluation on ArabicMMLU

Eevaluation of the Qwen-Arabic language model (1.5B parameters) on the ArabicMMLU benchmark. The model demonstrates strong parameter efficiency while maintaining competitive performance across various knowledge domains.

Model Overview

Qwen-Arabic is a 1.5B parameter language model fine-tuned for Arabic language tasks. It is based on the Qwen architecture and optimized using QLoRA (Quantized Low-Rank Adaptation) techniques.

Performance Results

Overall Performance

  • Average Accuracy: 42.3%
  • Best Category: Social Science (46.1%)
  • Most Challenging: Arabic Language (37.8%)

Category-wise Performance

Category Accuracy (%)
STEM 42.2
Social Science 46.1
Humanities 41.8
Arabic Language 37.8
Other 42.9
Average 42.3

Efficiency Analysis

  • Performance per Billion Parameters: 28.20 accuracy points
  • 389.0x more parameter-efficient than GPT-4
  • Achieves 58.3% of GPT-4's performance with only 0.15% of parameters

Comparison with Other Models

Model Parameters Average Accuracy Efficiency Score
GPT-4 ~1000B 72.5% 0.072
Jais-chat 30B 62.3% 2.077
AceGPT-chat 13B 52.6% 4.046
Qwen-Arabic 1.5B 42.3% 28.200

Prerequisites

  • Ubuntu (or similar Linux distribution)
  • Python 3.10
  • CUDA-compatible GPU with at least 4GB VRAM
  • At least 12GB system RAM
  • Ollama installed and configured

Setup

  1. Clone this repository:

    git clone https://github.com/prakash-aryan/qwen-arabic-project.git
    cd qwen-arabic-project
    
  2. Create and activate a virtual environment:

    python3.10 -m venv qwen_env
    source qwen_env/bin/activate
    
  3. Install the required packages:

    pip install --upgrade pip
    pip install -r requirements.txt
    
  4. Install PyTorch with CUDA support:

    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    

Project Structure

qwen-arabic-project/
├── data/
│   └── arabic_instruction_dataset/
├── models/
├── results/
├── src/
│   ├── compare_qwen_models.py
│   ├── evaluate_arabic_model.py
│   ├── finetune_qwen.py
│   ├── get_datasets.py
│   ├── load_and_merge_model.py
│   ├── preprocess_datasets.py
│   └── validate_dataset.py
├── tools/
│   └── llama-quantize
├── requirements.txt
├── run_pipeline.sh
├── Modelfile
└── README.md

Usage

  1. Download and prepare datasets:

    python src/get_datasets.py
    
  2. Preprocess and combine datasets:

    python src/preprocess_datasets.py
    
  3. Validate the dataset:

    python src/validate_dataset.py
    
  4. Fine-tune the model:

    python src/finetune_qwen.py --data_path ./data/arabic_instruction_dataset --output_dir ./models/qwen2_arabic_finetuned --num_epochs 3 --batch_size 1 --gradient_accumulation_steps 16 --learning_rate 2e-5
    
  5. Load and merge the fine-tuned model:

    python src/load_and_merge_model.py
    
  6. Convert to GGUF format:

    python src/convert_hf_to_gguf.py ./models/qwen2_arabic_merged_full --outfile ./models/qwen_arabic_merged_full.gguf
    
  7. Quantize the model:

    ./tools/llama-quantize ./models/qwen_arabic_merged_full.gguf ./models/qwen_arabic_merged_full_q4_k_m.gguf q4_k_m
    
  8. Create Ollama model:

    ollama create qwen-arabic-custom -f Modelfile
    
  9. Evaluate the model:

    python src/evaluate_arabic_model.py
    
  10. Compare models:

    python src/compare_qwen_models.py
    

Running the Full Pipeline

To run the entire pipeline from data preparation to model evaluation, use the provided shell script:

chmod +x run_pipeline.sh
./run_pipeline.sh

Notes

  • Ensure you have sufficient disk space for the datasets and model files.
  • The fine-tuning process can take several hours to days, depending on your hardware.
  • Monitor GPU memory usage during fine-tuning and adjust batch size or gradient accumulation steps if necessary.
  • Make sure to have Ollama installed for the model creation and evaluation steps.

Troubleshooting

  • If you encounter CUDA out-of-memory errors, try reducing the batch size or increasing gradient accumulation steps.
  • For any other issues, please check the error logs or open an issue in the GitHub repository.

License

This project is licensed under the GNU General Public License v3.0 (GPL-3.0).

This means:

  • You can use, modify, and distribute this software.
  • If you distribute modified versions, you must also distribute them under the GPL-3.0.
  • You must include the original copyright notice and the license text.
  • You must disclose your source code when you distribute the software.
  • There's no warranty for this free software.

For more details, see the LICENSE file in this repository or visit GNU GPL v3.0.

Acknowledgements

This project uses the following main libraries and tools:

  • Transformers by Hugging Face
  • PyTorch
  • PEFT (Parameter-Efficient Fine-Tuning)
  • Ollama
  • GGUF (for model conversion)

About

This project fine-tunes the Qwen2-1.5B model for Arabic language tasks using Quantized LoRA (QLoRA).

Topics

Resources

License

Stars

Watchers

Forks