forked from AI4Finance-Foundation/FinGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
commit files for Chinese FinGPT-Forecaster
- Loading branch information
Showing
7 changed files
with
1,295 additions
and
1,571 deletions.
There are no files selected for viewing
1,571 changes: 0 additions & 1,571 deletions
1,571
fingpt/FinGPT_Forecaster/A-share_data_preparation.ipynb
This file was deleted.
Oops, something went wrong.
344 changes: 344 additions & 0 deletions
344
fingpt/FinGPT_Forecaster/FinForecaster-in-Chinese/Ashare_data_.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,344 @@ | ||
import akshare as ak | ||
import pandas as pd | ||
import os | ||
import csv | ||
import re | ||
import time | ||
import math | ||
import json | ||
import random | ||
from datasets import Dataset | ||
import datasets | ||
|
||
start_date = "20230201" | ||
end_date = "20240101" | ||
|
||
# ------------------------------------------------------------------------------ | ||
# Data Aquisition | ||
# ------------------------------------------------------------------------------ | ||
|
||
# get return | ||
def get_return(symbol, adjust="qfq"): | ||
""" | ||
Get stock return data. | ||
Args: | ||
symbol: str | ||
A-share market stock symbol | ||
adjust: str ("qfq", "hfq") | ||
price ajustment | ||
default = "qfq" 前复权 | ||
Return: | ||
weekly forward filled return data | ||
""" | ||
|
||
# load data | ||
return_data = ak.stock_zh_a_hist(symbol=symbol, period="daily", start_date=start_date, end_date=end_date, adjust=adjust) | ||
|
||
# process timestamp | ||
return_data["日期"] = pd.to_datetime(return_data["日期"]) | ||
return_data.set_index("日期", inplace=True) | ||
|
||
# resample and filled with forward data | ||
weekly_data = return_data["收盘"].resample("W").ffill() | ||
weekly_returns = weekly_data.pct_change()[1:] | ||
weekly_start_prices = weekly_data[:-1] | ||
weekly_end_prices = weekly_data[1:] | ||
weekly_data = pd.DataFrame({ | ||
'起始日期': weekly_start_prices.index, | ||
'起始价': weekly_start_prices.values, | ||
'结算日期': weekly_end_prices.index, | ||
'结算价': weekly_end_prices.values, | ||
'周收益': weekly_returns.values | ||
}) | ||
weekly_data["简化周收益"] = weekly_data["周收益"].map(return_transform) | ||
|
||
return weekly_data | ||
def return_transform(ret): | ||
|
||
up_down = '涨' if ret >= 0 else '跌' | ||
integer = math.ceil(abs(100 * ret)) | ||
if integer == 0: | ||
return "平" | ||
|
||
return up_down + (str(integer) if integer <= 5 else '5+') | ||
|
||
# get basics | ||
def get_basic(symbol, data): | ||
""" | ||
Get and match basic data to news dataframe. | ||
Args: | ||
symbol: str | ||
A-share market stock symbol | ||
data: DataFrame | ||
dated news data | ||
Return: | ||
financial news dataframe with matched basic_financial info | ||
""" | ||
key_financials = ['报告期', '净利润同比增长率', '营业总收入同比增长率', '流动比率', '速动比率', '资产负债率'] | ||
|
||
# load quarterly basic data | ||
basic_quarter_financials = ak.stock_financial_abstract_ths(symbol = symbol, indicator="按单季度") | ||
basic_fin_dict = basic_quarter_financials.to_dict("index") | ||
basic_fin_list = [dict([(key, val) for key, val in basic_fin_dict[i].items() if (key in key_financials) and val]) for i in range(len(basic_fin_dict))] | ||
|
||
# match basic financial data to news dataframe | ||
matched_basic_fin = [] | ||
for i, row in data.iterrows(): | ||
|
||
newsweek_enddate = row['结算日期'].strftime("%Y-%m-%d") | ||
|
||
matched_basic = {} | ||
for basic in basic_fin_list: | ||
# match the most current financial report | ||
if basic["报告期"] < newsweek_enddate: | ||
matched_basic = basic | ||
break | ||
matched_basic_fin.append(json.dumps(matched_basic, ensure_ascii=False)) | ||
|
||
data['基本面'] = matched_basic_fin | ||
|
||
return data | ||
|
||
def raw_financial_data(symbol, with_basics = True): | ||
|
||
# get return data from API | ||
data = get_return(symbol=symbol) | ||
|
||
# get news data from local | ||
file_name = "news_data" + symbol + ".csv" | ||
news_df = pd.read_csv("HS300_news_data20240118/"+file_name, index_col=0) | ||
news_df["发布时间"] = pd.to_datetime(news_df["发布时间"], exact=False, format="%Y-%m-%d") | ||
news_df.sort_values(by=["发布时间"], inplace=True) | ||
|
||
# match weekly news for return data | ||
news_list = [] | ||
for a, row in data.iterrows(): | ||
week_start_date = row['起始日期'].strftime('%Y-%m-%d') | ||
week_end_date = row['结算日期'].strftime('%Y-%m-%d') | ||
print(symbol, ': ', week_start_date, ' - ', week_end_date) | ||
|
||
weekly_news = news_df.loc[(news_df["发布时间"]>week_start_date) & (news_df["发布时间"]<week_end_date)] | ||
|
||
weekly_news = [ | ||
{ | ||
"发布时间": n["发布时间"].strftime('%Y%m%d'), | ||
"新闻标题": n['新闻标题'], | ||
"新闻内容": n['新闻内容'], | ||
} for a, n in weekly_news.iterrows() | ||
] | ||
news_list.append(json.dumps(weekly_news,ensure_ascii=False)) | ||
|
||
data["新闻"] = news_list | ||
|
||
if with_basics: | ||
data = get_basic(symbol=symbol, data=data) | ||
# data.to_csv(symbol+start_date+"_"+end_date+".csv") | ||
else: | ||
data['新闻'] = [json.dumps({})] * len(data) | ||
# data.to_csv(symbol+start_date+"_"+end_date+"_nobasics.csv") | ||
|
||
return data | ||
|
||
# ------------------------------------------------------------------------------ | ||
# Prompt Generation | ||
# ------------------------------------------------------------------------------ | ||
|
||
# SYSTEM_PROMPT = "你是一个经验丰富的股票市场分析师。你的任务是根据过去几周的相关新闻和基本财务状况,列出公司的积极发展和潜在担忧,然后对公司未来一周的股价变化提供分析和预测。" \ | ||
# "你的回答语言应为中文。你的回答格式应该如下:\n\n[积极发展]:\n1. ...\n\n[潜在担忧]:\n1. ...\n\n[预测和分析]:\n...\n" | ||
SYSTEM_PROMPT = "你是一名经验丰富的股票市场分析师。你的任务是根据公司在过去几周内的相关新闻和季度财务状况,列出公司的积极发展和潜在担忧,然后结合你对整体金融经济市场的判断,对公司未来一周的股价变化提供预测和分析。" \ | ||
"你的回答语言应为中文。你的回答格式应该如下:\n\n[积极发展]:\n1. ...\n\n[潜在担忧]:\n1. ...\n\n[预测和分析]:\n...\n" | ||
|
||
def get_company_prompt_new(symbol): | ||
try: | ||
company_profile = dict(ak.stock_individual_info_em(symbol).values) | ||
except: | ||
print("Company Info Request Time Out! Please wait and retry.") | ||
company_profile["上市时间"] = pd.to_datetime(str(company_profile["上市时间"])).strftime("%Y年%m月%d日") | ||
|
||
template = "[公司介绍]:\n\n{股票简称}是一家在{行业}行业的领先实体,自{上市时间}成立并公开交易。截止今天,{股票简称}的总市值为{总市值}人民币,总股本数为{总股本},流通市值为{流通市值}人民币,流通股数为{流通股}。" \ | ||
"\n\n{股票简称}主要在中国运营,以股票代码{股票代码}在交易所进行交易。" | ||
|
||
formatted_profile = template.format(**company_profile) | ||
stockname = company_profile['股票简称'] | ||
return formatted_profile, stockname | ||
|
||
def map_return_label(return_lb): | ||
""" | ||
Map abbrev in the raw data | ||
Example: | ||
涨1 -- 上涨1% | ||
跌2 -- 下跌2% | ||
平 -- 股价持平 | ||
""" | ||
|
||
lb = return_lb.replace('涨', '上涨') | ||
lb = lb.replace('跌', '下跌') | ||
lb = lb.replace('平', '股价持平') | ||
lb = lb.replace('1', '0-1%') | ||
lb = lb.replace('2', '1-2%') | ||
lb = lb.replace('3', '2-3%') | ||
lb = lb.replace('4', '3-4%') | ||
if lb.endswith('+'): | ||
lb = lb.replace('5+', '超过5%') | ||
else: | ||
lb = lb.replace('5', '4-5%') | ||
|
||
return lb | ||
|
||
# check news quality | ||
def check_news_quality(n, last_n, week_end_date, repeat_rate = 0.6): | ||
try: | ||
# check content avalability | ||
if not (not(str(n['新闻内容'])[0].isdigit()) and not(str(n['新闻内容'])=='nan') and n['发布时间'][:8] <= week_end_date.replace('-', '')): | ||
return False | ||
# check highly duplicated news | ||
# (assume the duplicated contents happened adjacent) | ||
|
||
elif str(last_n['新闻内容'])=='nan': | ||
return True | ||
elif len(set(n['新闻内容'][:20]) & set(last_n['新闻内容'][:20])) >= 20*repeat_rate or len(set(n['新闻标题']) & set(last_n['新闻标题']))/len(last_n['新闻标题']) > repeat_rate: | ||
return False | ||
|
||
else: | ||
return True | ||
except TypeError: | ||
print(n) | ||
print(last_n) | ||
raise Exception("Check Error") | ||
|
||
def get_prompt_by_row_new(stock, row): | ||
""" | ||
Generate prompt for each row in the raw data | ||
Args: | ||
stock: str | ||
stock name | ||
row: pandas.Series | ||
Return: | ||
head: heading prompt | ||
news: news info | ||
basics: basic financial info | ||
""" | ||
|
||
week_start_date = row['起始日期'] if isinstance(row['起始日期'], str) else row['起始日期'].strftime('%Y-%m-%d') | ||
week_end_date = row['结算日期'] if isinstance(row['结算日期'], str) else row['结算日期'].strftime('%Y-%m-%d') | ||
term = '上涨' if row['结算价'] > row['起始价'] else '下跌' | ||
chg = map_return_label(row['简化周收益']) | ||
head = "自{}至{},{}的股票价格由{:.2f}{}至{:.2f},涨跌幅为:{}。在此期间的公司新闻如下:\n\n".format( | ||
week_start_date, week_end_date, stock, row['起始价'], term, row['结算价'], chg) | ||
|
||
news = json.loads(row["新闻"]) | ||
|
||
left, right = 0, 0 | ||
filtered_news = [] | ||
while left < len(news): | ||
n = news[left] | ||
|
||
if left == 0: | ||
# check first news quality | ||
if (not(str(n['新闻内容'])[0].isdigit()) and not(str(n['新闻内容'])=='nan') and n['发布时间'][:8] <= week_end_date.replace('-', '')): | ||
filtered_news.append("[新闻标题]:{}\n[新闻内容]:{}\n".format(n['新闻标题'], n['新闻内容'])) | ||
left += 1 | ||
|
||
else: | ||
news_check = check_news_quality(n, last_n = news[right], week_end_date= week_end_date, repeat_rate=0.5) | ||
if news_check: | ||
filtered_news.append("[新闻标题]:{}\n[新闻内容]:{}\n".format(n['新闻标题'], n['新闻内容'])) | ||
left += 1 | ||
right += 1 | ||
|
||
|
||
basics = json.loads(row['基本面']) | ||
if basics: | ||
basics = "如下所列为{}近期的一些金融基本面信息,记录时间为{}:\n\n[金融基本面]:\n\n".format( | ||
stock, basics['报告期']) + "\n".join(f"{k}: {v}" for k, v in basics.items() if k != 'period') | ||
else: | ||
basics = "[金融基本面]:\n\n 无金融基本面记录" | ||
|
||
return head, filtered_news, basics | ||
|
||
def sample_news(news, k=5): | ||
""" | ||
Ramdomly select past news. | ||
Args: | ||
news: | ||
newslist in the timerange | ||
k: int | ||
the number of selected news | ||
""" | ||
return [news[i] for i in sorted(random.sample(range(len(news)), k))] | ||
|
||
def get_all_prompts_new(symbol, min_past_week=1, max_past_weeks=2, with_basics=True): | ||
""" | ||
Generate prompt. The prompt consists of news from past weeks, basics financial information, and weekly return. | ||
History news in the prompt is chosen from past weeks range from min_past_week to max_past_week, | ||
and there is a number constraint on ramdomly selected data (default: up to 5). | ||
Args: | ||
symbol: str | ||
stock ticker | ||
min_past_week: int | ||
max_past_week: int | ||
with_basics: bool | ||
If true, add basic infomation to the prompt | ||
Return: | ||
Prompts for the daterange | ||
""" | ||
|
||
# Load Data | ||
df = raw_financial_data(symbol, with_basics=with_basics) | ||
|
||
company_prompt, stock = get_company_prompt_new(symbol) | ||
|
||
prev_rows = [] | ||
all_prompts = [] | ||
|
||
for row_idx, row in df.iterrows(): | ||
|
||
prompt = "" | ||
|
||
# judge for available history news | ||
if len(prev_rows) >= min_past_week: | ||
|
||
# randomly set retrieve data of past weeks | ||
# idx = min(random.choice(range(min_past_week, max_past_weeks+1)), len(prev_rows)) | ||
idx = min(max_past_weeks, len(prev_rows)) | ||
for i in range(-idx, 0): | ||
# Add Head | ||
prompt += "\n" + prev_rows[i][0] | ||
# Add History News (with numbers constraint) | ||
sampled_news = sample_news( | ||
prev_rows[i][1], | ||
min(3, len(prev_rows[i][1])) | ||
) | ||
if sampled_news: | ||
prompt += "\n".join(sampled_news) | ||
else: | ||
prompt += "无有关新闻报告" | ||
|
||
head, news, basics = get_prompt_by_row_new(stock, row) | ||
|
||
prev_rows.append((head, news, basics)) | ||
|
||
if len(prev_rows) > max_past_weeks: | ||
prev_rows.pop(0) | ||
|
||
# set this to make sure there is history news for each considered date | ||
if not prompt: | ||
continue | ||
|
||
prediction = map_return_label(row['简化周收益']) | ||
|
||
prompt = company_prompt + '\n' + prompt + '\n' + basics | ||
|
||
prompt += f"\n\n基于在{row['起始日期'].strftime('%Y-%m-%d')}之前的所有信息,让我们首先分析{stock}的积极发展和潜在担忧。请简洁地陈述,分别提出2-4个最重要的因素。大部分所提及的因素应该从公司的相关新闻中推断出来。" \ | ||
f"那么让我们假设你对于下一周({row['起始日期'].strftime('%Y-%m-%d')}至{row['结算日期'].strftime('%Y-%m-%d')})的预测是{prediction}。提供一个总结分析来支持你的预测。预测结果需要从你最后的分析中推断出来,因此不作为你分析的基础因素。" | ||
|
||
all_prompts.append(prompt.strip()) | ||
|
||
return all_prompts |
Oops, something went wrong.