Skip to content

Add sort and argsort tests #11898

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: gh/GregoryComer/53/head
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
201 changes: 201 additions & 0 deletions backends/test/compliance_suite/operators/test_argsort.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary.

# pyre-strict

from typing import Callable, Optional

import torch

from executorch.backends.test.compliance_suite import (
dtype_test,
operator_test,
OperatorTest,
)

class ArgsortModel(torch.nn.Module):
def __init__(
self,
dim: int = -1,
descending: bool = False,
stable: bool = False
):
super().__init__()
self.dim = dim
self.descending = descending
self.stable = stable

def forward(self, x):
return torch.argsort(x, dim=self.dim, descending=self.descending, stable=self.stable)

@operator_test
class TestArgsort(OperatorTest):
@dtype_test
def test_argsort_dtype(self, dtype, tester_factory: Callable) -> None:
# Test with different dtypes
model = ArgsortModel().to(dtype)
self._test_op(model, (torch.rand(10, 10).to(dtype),), tester_factory)

def test_argsort_basic(self, tester_factory: Callable) -> None:
# Basic test with default parameters
self._test_op(ArgsortModel(), (torch.randn(10, 10),), tester_factory)

def test_argsort_dim(self, tester_factory: Callable) -> None:
# Test with different dimensions

# 2D tensor, dim=0
self._test_op(ArgsortModel(dim=0), (torch.randn(5, 10),), tester_factory)

# 2D tensor, dim=1
self._test_op(ArgsortModel(dim=1), (torch.randn(5, 10),), tester_factory)

# 3D tensor, dim=0
self._test_op(ArgsortModel(dim=0), (torch.randn(3, 4, 5),), tester_factory)

# 3D tensor, dim=1
self._test_op(ArgsortModel(dim=1), (torch.randn(3, 4, 5),), tester_factory)

# 3D tensor, dim=2
self._test_op(ArgsortModel(dim=2), (torch.randn(3, 4, 5),), tester_factory)

# 4D tensor, dim=1
self._test_op(ArgsortModel(dim=1), (torch.randn(2, 3, 4, 5),), tester_factory)

# Negative dim (last dimension)
self._test_op(ArgsortModel(dim=-1), (torch.randn(3, 4, 5),), tester_factory)

# Negative dim (second-to-last dimension)
self._test_op(ArgsortModel(dim=-2), (torch.randn(3, 4, 5),), tester_factory)

def test_argsort_descending(self, tester_factory: Callable) -> None:
# Test with descending=True

# 2D tensor, dim=0, descending=True
self._test_op(ArgsortModel(dim=0, descending=True), (torch.randn(5, 10),), tester_factory)

# 2D tensor, dim=1, descending=True
self._test_op(ArgsortModel(dim=1, descending=True), (torch.randn(5, 10),), tester_factory)

# 3D tensor, dim=1, descending=True
self._test_op(ArgsortModel(dim=1, descending=True), (torch.randn(3, 4, 5),), tester_factory)

# 4D tensor, dim=2, descending=True
self._test_op(ArgsortModel(dim=2, descending=True), (torch.randn(2, 3, 4, 5),), tester_factory)

def test_argsort_stable(self, tester_factory: Callable) -> None:
# Test with stable=True

# 2D tensor, dim=0, stable=True
self._test_op(ArgsortModel(dim=0, stable=True), (torch.randn(5, 10),), tester_factory)

# 2D tensor, dim=1, stable=True
self._test_op(ArgsortModel(dim=1, stable=True), (torch.randn(5, 10),), tester_factory)

# 3D tensor, dim=1, stable=True
self._test_op(ArgsortModel(dim=1, stable=True), (torch.randn(3, 4, 5),), tester_factory)

# 4D tensor, dim=2, stable=True
self._test_op(ArgsortModel(dim=2, stable=True), (torch.randn(2, 3, 4, 5),), tester_factory)

def test_argsort_descending_stable(self, tester_factory: Callable) -> None:
# Test with descending=True and stable=True

# 2D tensor, dim=0, descending=True, stable=True
self._test_op(ArgsortModel(dim=0, descending=True, stable=True), (torch.randn(5, 10),), tester_factory)

# 2D tensor, dim=1, descending=True, stable=True
self._test_op(ArgsortModel(dim=1, descending=True, stable=True), (torch.randn(5, 10),), tester_factory)

# 3D tensor, dim=1, descending=True, stable=True
self._test_op(ArgsortModel(dim=1, descending=True, stable=True), (torch.randn(3, 4, 5),), tester_factory)

# 4D tensor, dim=2, descending=True, stable=True
self._test_op(ArgsortModel(dim=2, descending=True, stable=True), (torch.randn(2, 3, 4, 5),), tester_factory)

def test_argsort_shapes(self, tester_factory: Callable) -> None:
# Test with different tensor shapes

# 1D tensor
self._test_op(ArgsortModel(), (torch.randn(20),), tester_factory)

# 2D tensor
self._test_op(ArgsortModel(), (torch.randn(5, 10),), tester_factory)

# 3D tensor
self._test_op(ArgsortModel(), (torch.randn(3, 4, 5),), tester_factory)

# 4D tensor
self._test_op(ArgsortModel(), (torch.randn(2, 3, 4, 5),), tester_factory)

# 5D tensor
self._test_op(ArgsortModel(), (torch.randn(2, 2, 3, 4, 5),), tester_factory)

def test_argsort_values(self, tester_factory: Callable) -> None:
# Test with different value patterns

# Tensor with sequential values
x = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
self._test_op(ArgsortModel(), (x,), tester_factory)

# Tensor with unsorted values
x = torch.tensor([[3.0, 1.0, 2.0], [6.0, 4.0, 5.0]])
self._test_op(ArgsortModel(), (x,), tester_factory)

# Tensor with duplicate values
x = torch.tensor([[3.0, 3.0, 2.0], [6.0, 6.0, 5.0]])
self._test_op(ArgsortModel(), (x,), tester_factory)

# Tensor with negative values
x = torch.tensor([[-3.0, -2.0, -1.0], [-6.0, -5.0, -4.0]])
self._test_op(ArgsortModel(), (x,), tester_factory)

# Tensor with mixed positive and negative values
x = torch.tensor([[-3.0, 2.0, -1.0], [6.0, -5.0, 4.0]])
self._test_op(ArgsortModel(), (x,), tester_factory)

# Tensor with fractional values
x = torch.tensor([[0.5, 1.5, 2.5], [3.5, 4.5, 5.5]])
self._test_op(ArgsortModel(), (x,), tester_factory)

def test_argsort_edge_cases(self, tester_factory: Callable) -> None:
# Test edge cases

# Tensor with all same values
x = torch.ones(3, 4)
self._test_op(ArgsortModel(), (x,), tester_factory)

# Zero tensor
x = torch.zeros(3, 4)
self._test_op(ArgsortModel(), (x,), tester_factory)

# Tensor with infinity
x = torch.tensor([[1.0, float('inf'), 3.0], [4.0, 5.0, float('inf')]])
self._test_op(ArgsortModel(), (x,), tester_factory)

# Tensor with negative infinity
x = torch.tensor([[1.0, float('-inf'), 3.0], [4.0, 5.0, float('-inf')]])
self._test_op(ArgsortModel(), (x,), tester_factory)

# Tensor with NaN (NaN should be at the end for ascending sort)
x = torch.tensor([[1.0, float('nan'), 3.0], [4.0, 5.0, float('nan')]])
self._test_op(ArgsortModel(), (x,), tester_factory)

# Single element tensor
x = torch.tensor([5.0])
self._test_op(ArgsortModel(), (x,), tester_factory)

def test_argsort_scalar(self, tester_factory: Callable) -> None:
# Test with scalar input (1-element tensor)
self._test_op(ArgsortModel(), (torch.tensor([5.0]),), tester_factory)

def test_argsort_stability(self, tester_factory: Callable) -> None:
# Test stability with duplicate values
# When stable=True, the relative order of equal elements should be preserved

# Create a tensor with duplicate values
x = torch.tensor([[3.0, 3.0, 2.0], [6.0, 6.0, 5.0]])

# Test with stable=True
self._test_op(ArgsortModel(stable=True), (x,), tester_factory)

# Test with stable=False
self._test_op(ArgsortModel(stable=False), (x,), tester_factory)
Loading
Loading