Skip to content

Commit

Permalink
Merge pull request caicloud#44 from perhapszzy/master
Browse files Browse the repository at this point in the history
add restfule client and clip the gradient.
  • Loading branch information
perhapszzy authored Jun 2, 2017
2 parents 1eba5ce + 9fb9afe commit fea49c4
Show file tree
Hide file tree
Showing 2 changed files with 68 additions and 12 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# coding=utf-8
# Copyright 2017 Caicloud authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import print_function

import tensorflow as tf
from caicloud.clever.serving.client import restful_client
from caicloud.clever.serving.client import serving_error

make_ndarray = tf.contrib.util.make_ndarray

client = restful_client.RESTfulClient('192.168.16.42:31036')

def run():
inputs = {
'user': tf.contrib.util.make_tensor_proto([1], shape=[1]),
'item': tf.contrib.util.make_tensor_proto([2], shape=[1]),
}
try:
outputs = client.call_predict(inputs)
result = outputs["infer"]
print('score: {0}'.format(make_ndarray(result)[0][0]))
except serving_error.ServingRESTfulError as e:
print('serving error,\n status: {0},\n reason: {1},\n body: {2}'.format(
e.status, e.reason, e.body))

if __name__ == '__main__':
run()
Original file line number Diff line number Diff line change
Expand Up @@ -5,24 +5,26 @@
import numpy as np
import tensorflow as tf
import pandas as pd
import os

from caicloud.clever.tensorflow import dist_base
from caicloud.clever.tensorflow import model_exporter

tf.app.flags.DEFINE_string("export_dir",
"/tmp/saved_model/movie",
"model export directory path.")

tf.app.flags.DEFINE_string("batch_size", 128, "training batch size.")
tf.app.flags.DEFINE_string("embedding_dim", 50, "embedding dimension.")
tf.app.flags.DEFINE_string("export_dir", "/tmp/saved_model/movie", "model export directory path.")
tf.app.flags.DEFINE_string("data_dir", "/caicloud/admin/hengfengPOC/data", "path where data is located.")

tf.app.flags.DEFINE_integer("batch_size", 128, "training batch size.")
tf.app.flags.DEFINE_integer("embedding_dim", 50, "embedding dimension.")
tf.app.flags.DEFINE_float("learning_rate", 0.01, "learning rate.")
FLAGS = tf.app.flags.FLAGS

USER_NUM = 6040
ITEM_NUM = 3952

def get_data():
col_names = ["user", "item", "rate", "st"]
df = pd.read_csv("/tmp/movielens/ml-1m/ratings.dat", sep="::", header=None, names=col_names, engine='python')
datafile = os.path.join(FLAGS.data_dir, "ml-1m/ratings.dat")
df = pd.read_csv(datafile, sep="::", header=None, names=col_names, engine='python')

df["user"] -= 1
df["item"] -= 1
Expand Down Expand Up @@ -96,9 +98,19 @@ def model_fn(sync, num_replicas):
_global_step = tf.contrib.framework.get_or_create_global_step()

_cost = tf.square(_infer - _rate_batch)
optimizer = tf.train.AdamOptimizer(0.001)
_train_op = optimizer.minimize(_cost, global_step=_global_step)

optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)

if sync:
optimizer = tf.train.SyncReplicasOptimizer(
optimizer,
replicas_to_aggregate=num_replicas,
total_num_replicas=num_replicas,
name="mnist_sync_replicas")

gradients, variables = zip(*optimizer.compute_gradients(_cost))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
_train_op = optimizer.apply_gradients(zip(gradients, variables), global_step=_global_step)

_rmse = tf.sqrt(tf.reduce_mean(_cost))

def rmse_evalute_fn(session):
Expand Down Expand Up @@ -129,8 +141,11 @@ def train_fn(session, num_global_step):
users, items, rates = next(_iter_train)
session.run(_train_op, feed_dict={_user_batch: users, _item_batch: items, _rate_batch: rates})

if _local_step % 2000 == 0:
rmse, infer, cost = session.run([_rmse, _infer, _cost], feed_dict={_user_batch: _test["user"], _item_batch: _test["item"], _rate_batch: _test["rate"]})
if _local_step % 200 == 0:
rmse, infer, cost = session.run(
[_rmse, _infer, _cost],
feed_dict={_user_batch: _test["user"], _item_batch: _test["item"], _rate_batch: _test["rate"]})

print("Eval RMSE at round {} is: {}".format(num_global_step, rmse))

_local_step += 1
Expand Down

0 comments on commit fea49c4

Please sign in to comment.