Skip to content

Commit

Permalink
Audio to audio
Browse files Browse the repository at this point in the history
Topic: audio_to_audio
Relative: audio_splitter
  • Loading branch information
hmartiro committed Jan 6, 2023
1 parent 9f79755 commit 61757b3
Show file tree
Hide file tree
Showing 3 changed files with 228 additions and 1 deletion.
200 changes: 200 additions & 0 deletions riffusion/streamlit/pages/audio_to_audio.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
import io
import typing as T

import numpy as np
import pydub
import streamlit as st
import torch
from PIL import Image

from riffusion.spectrogram_image_converter import SpectrogramImageConverter
from riffusion.spectrogram_params import SpectrogramParams
from riffusion.streamlit import util as streamlit_util


@st.experimental_memo
def load_audio_file(audio_file: io.BytesIO) -> pydub.AudioSegment:
return pydub.AudioSegment.from_file(audio_file)


def render_audio_to_audio() -> None:
st.set_page_config(layout="wide", page_icon="🎸")

st.subheader(":wave: Audio to Audio")
st.write(
"""
Modify existing audio from a text prompt.
"""
)

device = streamlit_util.select_device(st.sidebar)

audio_file = st.file_uploader(
"Upload audio",
type=["mp3", "ogg", "wav", "flac"],
label_visibility="collapsed",
)

if not audio_file:
st.info("Upload audio to get started")
return

st.write("#### Original Audio")
st.audio(audio_file)

segment = load_audio_file(audio_file)

if "counter" not in st.session_state:
st.session_state.counter = 0

def increment_counter():
st.session_state.counter += 1

cols = st.columns(4)
start_time_s = cols[0].number_input(
"Start Time [s]",
min_value=0.0,
value=0.0,
)
duration_s = cols[1].number_input(
"Duration [s]",
min_value=0.0,
max_value=segment.duration_seconds,
value=15.0,
)
clip_duration_s = cols[2].number_input(
"Clip Duration [s]",
min_value=3.0,
max_value=10.0,
value=5.0,
)
overlap_duration_s = cols[3].number_input(
"Overlap Duration [s]",
min_value=0.0,
max_value=10.0,
value=0.2,
)

increment_s = clip_duration_s - overlap_duration_s
clip_start_times = start_time_s + np.arange(0, duration_s - clip_duration_s, increment_s)
st.write(
f"Slicing {len(clip_start_times)} clips of duration {clip_duration_s}s"
f"with overlap {overlap_duration_s}s."
)

with st.form("Conversion Params"):

prompt = st.text_input("Text Prompt")
negative_prompt = st.text_input("Negative Prompt")

cols = st.columns(4)
denoising_strength = cols[0].number_input(
"Denoising Strength",
min_value=0.0,
max_value=1.0,
value=0.65,
)
guidance_scale = cols[1].number_input(
"Guidance Scale",
min_value=0.0,
max_value=20.0,
value=7.0,
)
num_inference_steps = int(cols[2].number_input(
"Num Inference Steps",
min_value=1,
max_value=150,
value=50,
))
seed = int(cols[3].number_input(
"Seed",
min_value=-1,
value=-1,
))
# TODO replace seed -1 with random

submit_button = st.form_submit_button("Convert", on_click=increment_counter)

# TODO fix
pipeline = streamlit_util.load_stable_diffusion_img2img_pipeline(
checkpoint="/Users/hayk/.cache/huggingface/diffusers/models--riffusion--riffusion-model-v1/snapshots/79993436c342ff529802d1dabb016ebe15b5c4ae",
device=device,
# no_traced_unet=True,
)

st.info("Slicing up audio into clips")
clip_segments: T.List[pydub.AudioSegment] = []
for i, clip_start_time_s in enumerate(clip_start_times):
clip_start_time_ms = int(clip_start_time_s * 1000)
clip_duration_ms = int(clip_duration_s * 1000)
clip_segment = segment[clip_start_time_ms : clip_start_time_ms + clip_duration_ms]

clip_segments.append(clip_segment)

st.write(f"#### Clip {i} at {clip_start_time_s}s")
audio_bytes = io.BytesIO()
clip_segment.export(audio_bytes, format="wav")
st.audio(audio_bytes)

if not submit_button:
return

# TODO cache
params = SpectrogramParams()
converter = SpectrogramImageConverter(params=params, device=device)
st.info("Converting audio clips into spectrogram images")
init_images = [converter.spectrogram_image_from_audio(s) for s in clip_segments]

st.info("Running img2img diffusion")
result_images : T.List[Image.Image] = []
progress = st.progress(0.0)
for segment, init_image in zip(clip_segments, init_images):
generator = torch.Generator(device="cpu").manual_seed(seed)
num_expected_steps = max(int(num_inference_steps * denoising_strength), 1)
result = pipeline(
prompt=prompt,
image=init_image,
strength=denoising_strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt or None,
num_images_per_prompt=1,
generator=generator,
callback=lambda i, t, _: progress.progress(i / num_expected_steps),
callback_steps=1,
)

image = result.images[0]
result_images.append(image)

row = st.columns(2)
st.write(init_image.size, image.size)
row[0].image(init_image)
row[1].image(image)

st.info("Converting back into audio clips")
result_segments : T.List[pydub.AudioSegment] = []
for image in result_images:
result_segments.append(converter.audio_from_spectrogram_image(image))

# Combine clips with a crossfade based on overlap
crossfade_ms = int(overlap_duration_s * 1000)
combined_segment = result_segments[0]
for segment in result_segments[1:]:
combined_segment = combined_segment.append(segment, crossfade=crossfade_ms)

audio_bytes = io.BytesIO()
combined_segment.export(audio_bytes, format="mp3")
st.write(f"#### Final Audio ({combined_segment.duration_seconds}s)")
st.audio(audio_bytes)


@st.cache
def test(segment: pydub.AudioSegment, counter: int) -> int:
st.write("#### Trimmed")
st.write(segment.duration_seconds)
return counter


if __name__ == "__main__":
render_audio_to_audio()
3 changes: 3 additions & 0 deletions riffusion/streamlit/playground.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,9 @@ def render_main():
create_link(":musical_keyboard: Image to Audio", "/image_to_audio")
st.write("Reconstruct audio from spectrogram images.")

create_link(":wave: Audio to Audio", "/audio_to_audio")
st.write("Modify audio with a text prompt")


def create_link(name: str, url: str) -> None:
st.markdown(
Expand Down
26 changes: 25 additions & 1 deletion riffusion/streamlit/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import pydub
import streamlit as st
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionImg2ImgPipeline, StableDiffusionPipeline
from PIL import Image

from riffusion.audio_splitter import AudioSplitter
Expand Down Expand Up @@ -57,6 +57,30 @@ def load_stable_diffusion_pipeline(
).to(device)



@st.experimental_singleton
def load_stable_diffusion_img2img_pipeline(
checkpoint: str = "riffusion/riffusion-model-v1",
device: str = "cuda",
dtype: torch.dtype = torch.float16,
) -> StableDiffusionImg2ImgPipeline:
"""
Load the image to image pipeline.
TODO(hayk): Merge this into RiffusionPipeline to just load one model.
"""
if device == "cpu" or device.lower().startswith("mps"):
print(f"WARNING: Falling back to float32 on {device}, float16 is unsupported")
dtype = torch.float32

return StableDiffusionImg2ImgPipeline.from_pretrained(
checkpoint,
revision="main",
torch_dtype=dtype,
safety_checker=lambda images, **kwargs: (images, False),
).to(device)


@st.experimental_memo
def run_txt2img(
prompt: str,
Expand Down

0 comments on commit 61757b3

Please sign in to comment.