Skip to content

深度学习初学者理论与实践学习的资料总结

License

Notifications You must be signed in to change notification settings

qingchunlizhi/awesome-dl-course

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 

Repository files navigation

awesome-dl-course Awesome

Table of Contents

Courses

夯实基础

Machine learning

  1. Machine Learning - Stanford by Andrew Ng in Coursera (2010-2014)

Visual Recognition

  1. Convolutional Neural Networks for Visual Recognition - Stanford by Fei-Fei Li, Andrej Karpathy (2017)
    视频与课件下载链接:https://pan.baidu.com/s/1U63CVgsQmPBb1gxzqglTcA 提取码:2jbo

Natural Language Processing

  1. Deep Learning for Natural Language Processing - Stanford
    视频与课件下载链接:https://pan.baidu.com/s/1-gi-T4uiQmhJy4em0ICd4A 提取码:hljl

Self-Driving Cars

  1. MIT 6.S094: Deep Learning for Self-Driving Cars
    视频与课件下载链接:https://pan.baidu.com/s/1E_Ef2fiPAcWWHZCUc6Eqpw 提取码:s6yd

Deep Reinforcement Learning

  1. Berkeley CS 294: Deep Reinforcement Learning
    中文字幕视频下载链接:https://pan.baidu.com/s/1qsEcDXpTehKR7USDMFOQ3Q 提取码:cak6
  2. UCL & Deepmind Deep Reinforcement Learning

Practice

课程实践

  1. Tensorflow-Stanford 提取码:qhgb
  2. Pytorch by Jeremy Howard - Fast.ai

Tutorials

通过上面理论与实践课程的学习,具备了一定经验,下面这些优秀的归纳将助你快速实现你的想法!

  1. TensorFlow-From-Zero-To-One
  2. PyTorch-From-Zero-To-One
  3. TensorFlow-Course
  4. PyTorch_Tutorial
  5. practicalAI-English
  6. practicalAI-Chinese
  7. 100-Days-Of-ML-Code-Chinese
  8. 100-Days-Of-ML-Code-English
  9. awesome-deep-learning
  10. awesome-image-classification
  11. deep_learning_object_detection
  12. awesome-meta-learning
  13. homemade-machine-learning
  14. awesome-computer-vision
  15. awesome-deep-vision
  16. awesome-object-detection
  17. awesome-human-pose-estimation
  18. awesome-lane-detection
  19. PyTorch_Tutorial
  20. stanford-tensorflow-tutorials
  21. practicalAI-English
  22. practicalAI-Chinese
  23. Awesome-Crowd-Counting

About

深度学习初学者理论与实践学习的资料总结

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published