- Why do we need this ESP32_PWM library
- Changelog
- Prerequisites
- Installation
- HOWTO Fix
Multiple Definitions
Linker Error - HOWTO Use analogRead() with ESP32 running WiFi and/or BlueTooth (BT/BLE)
- More useful Information
- How to use
- Examples
- Example ISR_16_PWMs_Array_Complex
- Debug Terminal Output Samples
- Debug
- Troubleshooting
- Issues
- TO DO
- DONE
- Contributions and Thanks
- Contributing
- License
- Copyright
Why do we need this ESP32_PWM library
This library enables you to use Interrupt from Hardware Timers on an ESP32, ESP32_S2-based board to create and output PWM to pins. Becayse this library doesn't use the powerful hardware-controlled PWM with limitations, the maximum PWM frequency is currently limited at 500Hz, which is suitable for many real-life applications. Now you can also modify PWM settings on-the-fly.
This library enables you to use Interrupt from Hardware Timers on an ESP32, ESP32_S2 or ESP32_C3-based board to create and output PWM to pins. It now supports 16 ISR-based synchronized PWM channels, while consuming only 1 Hardware Timer. PWM interval can be very long (uint32_t millisecs). The most important feature is they're ISR-based PWM channels. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These hardware PWM channels, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy.
As Hardware Timers are rare, and very precious assets of any board, this library now enables you to use up to 16 ISR-based synchronized PWM channels, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs).
Now with these new 16 ISR-based timers, the maximum interval is practically unlimited (limited only by unsigned long miliseconds) while the accuracy is nearly perfect compared to software timers.
The most important feature is they're ISR-based PWM channels. Therefore, their executions are not blocked by bad-behaving functions / tasks. This important feature is absolutely necessary for mission-critical tasks.
The ISR_16_PWMs_Array_Complex example will demonstrate the nearly perfect accuracy compared to software timers by printing the actual elapsed millisecs of each type of PWM channels.
Being ISR-based timers, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet and Blynk services. You can also have many (up to 16)
timers to use.
This non-being-blocked important feature is absolutely necessary for mission-critical tasks.
Imagine you have a system with a mission-critical function, measuring water level and control the sump pump or doing something much more important. You normally use a software timer to poll, or even place the function in loop(). But what if another function is blocking the loop() or setup().
So your function might not be executed, and the result would be disastrous.
You'd prefer to have your function called, no matter what happening with other functions (busy loop, bug, etc.).
The correct choice is to use a Hardware PWM-channels with Interrupt to call your function.
These hardware timers, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy.
Functions using normal software timers, relying on loop() and calling millis(), won't work if the loop() or setup() is blocked by certain operation. For example, certain function is blocking while it's connecting to WiFi or some services.
The catch is your function is now part of an ISR (Interrupt Service Routine), and must be lean / mean, and follow certain rules. More to read on:
- ESP32 boards, such as ESP32_DEV, etc.
- ESP32S2-based boards, such as ESP32S2_DEV, ESP32_S2 Saola, etc.
- ESP32C3-based boards, such as ESP32C3_DEV, etc. Not yet supported yet
-
Inside the attached function, delay() won’t work and the value returned by millis() will not increment. Serial data received while in the function may be lost. You should declare as volatile any variables that you modify within the attached function.
-
Typically global variables are used to pass data between an ISR and the main program. To make sure variables shared between an ISR and the main program are updated correctly, declare them as volatile.
Arduino IDE 1.8.16+
for ArduinoESP32 Core 2.0.1+
for ESP32-based boards. .
The best and easiest way is to use Arduino Library Manager
. Search for ESP32_PWM, then select / install the latest version.
You can also use this link for more detailed instructions.
Another way to install is to:
- Navigate to ESP32_PWM page.
- Download the latest release
ESP32_PWM-master.zip
. - Extract the zip file to
ESP32_PWM-master
directory - Copy whole
ESP32_PWM-master
folder to Arduino libraries' directory such as~/Arduino/libraries/
.
- Install VS Code
- Install PlatformIO
- Install ESP32_PWM library by using Library Manager. Search for ESP32_PWM in Platform.io Author's Libraries
- Use included platformio.ini file from examples to ensure that all dependent libraries will installed automatically. Please visit documentation for the other options and examples at Project Configuration File
The current library implementation, using xyz-Impl.h instead of standard xyz.cpp, possibly creates certain Multiple Definitions
Linker error in certain use cases. Although it's simple to just modify several lines of code, either in the library or in the application, the library is adding 2 more source directories
- scr_h for new h-only files
- src_cpp for standard h/cpp files
besides the standard src directory.
To use the old standard cpp way, locate this library' directory, then just
- Delete the all the files in src directory.
- Copy all the files in src_cpp directory into src.
- Close then reopen the application code in Arduino IDE, etc. to recompile from scratch.
To re-use the new h-only way, just
- Delete the all the files in src directory.
- Copy the files in src_h directory into src.
- Close then reopen the application code in Arduino IDE, etc. to recompile from scratch.
Please have a look at ESP_WiFiManager Issue 39: Not able to read analog port when using the autoconnect example to have more detailed description and solution of the issue.
- ADC1 controls ADC function for pins GPIO32-GPIO39
- ADC2 controls ADC function for pins GPIO0, 2, 4, 12-15, 25-27
Look in file adc_common.c
In ADC2, there're two locks used for different cases:
lock shared with app and Wi-Fi: ESP32: When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed. ESP32S2: The controller's control over the ADC is determined by the arbiter. There is no need to control by lock.
lock shared between tasks: when several tasks sharing the ADC2, we want to guarantee all the requests will be handled. Since conversions are short (about 31us), app returns the lock very soon, we use a spinlock to stand there waiting to do conversions one by one.
adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.
- In order to use ADC2 for other functions, we have to acquire complicated firmware locks and very difficult to do
- So, it's not advisable to use ADC2 with WiFi/BlueTooth (BT/BLE).
- Use ADC1, and pins GPIO32-GPIO39
- If somehow it's a must to use those pins serviced by ADC2 (GPIO0, 2, 4, 12, 13, 14, 15, 25, 26 and 27), use the fix mentioned at the end of ESP_WiFiManager Issue 39: Not able to read analog port when using the autoconnect example to work with ESP32 WiFi/BlueTooth (BT/BLE).
- The ESP32 and ESP32_S2 has two timer groups, each one with two general purpose hardware timers.
- The ESP32_C3 has two timer groups, each one with only one general purpose hardware timer.
- All the timers are based on 64-bit counters and 16-bit prescalers.
- The timer counters can be configured to count up or down and support automatic reload and software reload.
- They can also generate alarms when they reach a specific value, defined by the software.
- The value of the counter can be read by the software program.
Now with these new 16 ISR-based PWM-channels
(while consuming only 1 hardware timer), the maximum interval is practically unlimited (limited only by unsigned long miliseconds). The accuracy is nearly perfect compared to software PWM-channels. The most important feature is they're ISR-based PWM-channels Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
The ISR_16_PWMs_Array_Complex example will demonstrate the nearly perfect accuracy compared to software-based PWM-channels by printing the actual elapsed microsecs / millisecs
of each type of PWM-channels.
Being ISR-based PWM-channels, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet and Blynk services. You can also have many (up to 16)
synchronized PWM-channels to use.
This non-being-blocked important feature is absolutely necessary for mission-critical tasks.
You'll see SimpleTimer
is blocked while system is connecting to WiFi / Internet / Blynk, as well as by blocking task
in loop(), using delay() function as an example. The elapsed time then is very unaccurate
Before using any Timer, you have to make sure the Timer has not been used by any other purpose.
Timer0, Timer1, Timer2 and Timer3
are supported for ESP32
- ISR_16_PWMs_Array
- ISR_16_PWMs_Array_Complex
- ISR_16_PWMs_Array_Simple
- ISR_Changing_PWM
- ISR_Modify_PWM
Example ISR_16_PWMs_Array_Complex
#if !defined( ESP32 )
#error This code is designed to run on ESP32 platform, not Arduino nor ESP8266! Please check your Tools->Board setting.
#elif ( ARDUINO_ESP32C3_DEV )
#error This code is not designed to run on ESP32-C3 platform! Please check your Tools->Board setting.
#endif
// These define's must be placed at the beginning before #include "ESP32_PWM.h"
// _PWM_LOGLEVEL_ from 0 to 4
// Don't define _PWM_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define _PWM_LOGLEVEL_ 4
#define USING_MICROS_RESOLUTION true //false
#include "ESP32_PWM.h"
#include <SimpleTimer.h> // https://github.com/jfturcot/SimpleTimer
#ifndef LED_BUILTIN
#define LED_BUILTIN 2
#endif
#ifndef LED_BLUE
#define LED_BLUE 25
#endif
#ifndef LED_RED
#define LED_RED 27
#endif
#define HW_TIMER_INTERVAL_US 20L
volatile uint32_t startMicros = 0;
// Init ESP32 timer 1
ESP32Timer ITimer(1);
// Init ESP32_ISR_PWM
ESP32_PWM ISR_PWM;
bool IRAM_ATTR TimerHandler(void * timerNo)
{
ISR_PWM.run();
return true;
}
/////////////////////////////////////////////////
#define NUMBER_ISR_PWMS 16
#define PIN_D0 0 // Pin D0 mapped to pin GPIO0/BOOT/ADC11/TOUCH1 of ESP32
#define PIN_D1 1 // Pin D1 mapped to pin GPIO1/TX0 of ESP32
#define PIN_D2 2 // Pin D2 mapped to pin GPIO2/ADC12/TOUCH2 of ESP32
#define PIN_D3 3 // Pin D3 mapped to pin GPIO3/RX0 of ESP32
#define PIN_D4 4 // Pin D4 mapped to pin GPIO4/ADC10/TOUCH0 of ESP32
#define PIN_D5 5 // Pin D5 mapped to pin GPIO5/SPISS/VSPI_SS of ESP32
#define PIN_D12 12 // Pin D12 mapped to pin GPIO12/HSPI_MISO/ADC15/TOUCH5/TDI of ESP32
#define PIN_D13 13 // Pin D13 mapped to pin GPIO13/HSPI_MOSI/ADC14/TOUCH4/TCK of ESP32
#define PIN_D14 14 // Pin D14 mapped to pin GPIO14/HSPI_SCK/ADC16/TOUCH6/TMS of ESP32
#define PIN_D15 15 // Pin D15 mapped to pin GPIO15/HSPI_SS/ADC13/TOUCH3/TDO of ESP32
#define PIN_D16 16 // Pin D16 mapped to pin GPIO16/TX2 of ESP32
#define PIN_D17 17 // Pin D17 mapped to pin GPIO17/RX2 of ESP32
#define PIN_D18 18 // Pin D18 mapped to pin GPIO18/VSPI_SCK of ESP32
#define PIN_D19 19 // Pin D19 mapped to pin GPIO19/VSPI_MISO of ESP32
#define PIN_D21 21 // Pin D21 mapped to pin GPIO21/SDA of ESP32
#define PIN_D22 22 // Pin D22 mapped to pin GPIO22/SCL of ESP32
#define PIN_D23 23 // Pin D23 mapped to pin GPIO23/VSPI_MOSI of ESP32
#define PIN_D24 24 // Pin D24 mapped to pin GPIO24 of ESP32
#define PIN_D25 25 // Pin D25 mapped to pin GPIO25/ADC18/DAC1 of ESP32
#define PIN_D26 26 // Pin D26 mapped to pin GPIO26/ADC19/DAC2 of ESP32
#define PIN_D27 27 // Pin D27 mapped to pin GPIO27/ADC17/TOUCH7 of ESP32
typedef void (*irqCallback) ();
//////////////////////////////////////////////////////
#define USE_COMPLEX_STRUCT true
#define USING_PWM_FREQUENCY false //true
//////////////////////////////////////////////////////
#if USE_COMPLEX_STRUCT
typedef struct
{
uint32_t PWM_Pin;
irqCallback irqCallbackStartFunc;
irqCallback irqCallbackStopFunc;
#if USING_PWM_FREQUENCY
uint32_t PWM_Freq;
#else
uint32_t PWM_Period;
#endif
uint32_t PWM_DutyCycle;
uint64_t deltaMicrosStart;
uint64_t previousMicrosStart;
uint64_t deltaMicrosStop;
uint64_t previousMicrosStop;
} ISR_PWM_Data;
// In NRF52, avoid doing something fancy in ISR, for example Serial.print()
// The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
// Or you can get this run-time error / crash
void doingSomethingStart(int index);
void doingSomethingStop(int index);
#else // #if USE_COMPLEX_STRUCT
volatile unsigned long deltaMicrosStart [NUMBER_ISR_PWMS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
volatile unsigned long previousMicrosStart [NUMBER_ISR_PWMS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
volatile unsigned long deltaMicrosStop [NUMBER_ISR_PWMS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
volatile unsigned long previousMicrosStop [NUMBER_ISR_PWMS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// You can assign pins here. Be carefull to select good pin to use or crash, e.g pin 6-11
// Can't use PIN_D1 for core v2.0.1+
uint32_t PWM_Pin[NUMBER_ISR_PWMS] =
{
PIN_D24, LED_BUILTIN, PIN_D3, PIN_D4, PIN_D5, PIN_D12, PIN_D13, PIN_D14,
PIN_D15, PIN_D16, PIN_D17, PIN_D18, PIN_D19, PIN_D21, PIN_D22, PIN_D23
};
// You can assign any interval for any timer here, in microseconds
uint32_t PWM_Period[NUMBER_ISR_PWMS] =
{
1000000L, 500000L, 333333L, 250000L, 200000L, 166667L, 142857L, 125000L,
111111L, 100000L, 66667L, 50000L, 40000L, 33333L, 25000L, 20000L
};
// You can assign any interval for any timer here, in Hz
uint32_t PWM_Freq[NUMBER_ISR_PWMS] =
{
1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 15, 20, 25, 30, 40, 50
};
// You can assign any interval for any timer here, in milliseconds
uint32_t PWM_DutyCycle[NUMBER_ISR_PWMS] =
{
5, 10, 20, 30, 40, 45, 50, 55,
60, 65, 70, 75, 80, 85, 90, 95
};
void doingSomethingStart(int index)
{
unsigned long currentMicros = micros();
deltaMicrosStart[index] = currentMicros - previousMicrosStart[index];
previousMicrosStart[index] = currentMicros;
}
void doingSomethingStop(int index)
{
unsigned long currentMicros = micros();
// Count from start to stop PWM pulse
deltaMicrosStop[index] = currentMicros - previousMicrosStart[index];
previousMicrosStop[index] = currentMicros;
}
#endif // #if USE_COMPLEX_STRUCT
////////////////////////////////////
// Shared
////////////////////////////////////
void doingSomethingStart0()
{
doingSomethingStart(0);
}
void doingSomethingStart1()
{
doingSomethingStart(1);
}
void doingSomethingStart2()
{
doingSomethingStart(2);
}
void doingSomethingStart3()
{
doingSomethingStart(3);
}
void doingSomethingStart4()
{
doingSomethingStart(4);
}
void doingSomethingStart5()
{
doingSomethingStart(5);
}
void doingSomethingStart6()
{
doingSomethingStart(6);
}
void doingSomethingStart7()
{
doingSomethingStart(7);
}
void doingSomethingStart8()
{
doingSomethingStart(8);
}
void doingSomethingStart9()
{
doingSomethingStart(9);
}
void doingSomethingStart10()
{
doingSomethingStart(10);
}
void doingSomethingStart11()
{
doingSomethingStart(11);
}
void doingSomethingStart12()
{
doingSomethingStart(12);
}
void doingSomethingStart13()
{
doingSomethingStart(13);
}
void doingSomethingStart14()
{
doingSomethingStart(14);
}
void doingSomethingStart15()
{
doingSomethingStart(15);
}
//////////////////////////////////////////////////////
void doingSomethingStop0()
{
doingSomethingStop(0);
}
void doingSomethingStop1()
{
doingSomethingStop(1);
}
void doingSomethingStop2()
{
doingSomethingStop(2);
}
void doingSomethingStop3()
{
doingSomethingStop(3);
}
void doingSomethingStop4()
{
doingSomethingStop(4);
}
void doingSomethingStop5()
{
doingSomethingStop(5);
}
void doingSomethingStop6()
{
doingSomethingStop(6);
}
void doingSomethingStop7()
{
doingSomethingStop(7);
}
void doingSomethingStop8()
{
doingSomethingStop(8);
}
void doingSomethingStop9()
{
doingSomethingStop(9);
}
void doingSomethingStop10()
{
doingSomethingStop(10);
}
void doingSomethingStop11()
{
doingSomethingStop(11);
}
void doingSomethingStop12()
{
doingSomethingStop(12);
}
void doingSomethingStop13()
{
doingSomethingStop(13);
}
void doingSomethingStop14()
{
doingSomethingStop(14);
}
void doingSomethingStop15()
{
doingSomethingStop(15);
}
//////////////////////////////////////////////////////
#if USE_COMPLEX_STRUCT
#if USING_PWM_FREQUENCY
ISR_PWM_Data curISR_PWM_Data[NUMBER_ISR_PWMS] =
{
//irqCallbackStartFunc, PWM_Period, deltaMicrosStart, previousMicrosStart
{ PIN_D1, doingSomethingStart0, doingSomethingStop0, 1, 5, 0, 0, 0, 0 },
{ LED_BUILTIN, doingSomethingStart1, doingSomethingStop1, 2, 10, 0, 0, 0, 0 },
{ PIN_D3, doingSomethingStart2, doingSomethingStop2, 3, 20, 0, 0, 0, 0 },
{ PIN_D4, doingSomethingStart3, doingSomethingStop3, 4, 30, 0, 0, 0, 0 },
{ PIN_D5, doingSomethingStart4, doingSomethingStop4, 5, 40, 0, 0, 0, 0 },
{ PIN_D12, doingSomethingStart5, doingSomethingStop5, 6, 45, 0, 0, 0, 0 },
{ PIN_D13, doingSomethingStart6, doingSomethingStop6, 7, 50, 0, 0, 0, 0 },
{ PIN_D14, doingSomethingStart7, doingSomethingStop7, 8, 55, 0, 0, 0, 0 },
{ PIN_D15, doingSomethingStart8, doingSomethingStop8, 9, 60, 0, 0, 0, 0 },
{ PIN_D16, doingSomethingStart9, doingSomethingStop9, 10, 65, 0, 0, 0, 0 },
{ PIN_D17, doingSomethingStart10, doingSomethingStop10, 15, 70, 0, 0, 0, 0 },
{ PIN_D18, doingSomethingStart11, doingSomethingStop11, 20, 75, 0, 0, 0, 0 },
{ PIN_D19, doingSomethingStart12, doingSomethingStop12, 25, 80, 0, 0, 0, 0 },
{ PIN_D21, doingSomethingStart13, doingSomethingStop13, 30, 85, 0, 0, 0, 0 },
{ PIN_D22, doingSomethingStart14, doingSomethingStop14, 40, 90, 0, 0, 0, 0 },
{ PIN_D23, doingSomethingStart15, doingSomethingStop15, 50, 95, 0, 0, 0, 0 }
};
#else // #if USING_PWM_FREQUENCY
ISR_PWM_Data curISR_PWM_Data[NUMBER_ISR_PWMS] =
{
//irqCallbackStartFunc, PWM_Period, deltaMicrosStart, previousMicrosStart
{ PIN_D1, doingSomethingStart0, doingSomethingStop0, 1000000L, 5, 0, 0, 0, 0 },
{ LED_BUILTIN, doingSomethingStart1, doingSomethingStop1, 500000L, 10, 0, 0, 0, 0 },
{ PIN_D3, doingSomethingStart2, doingSomethingStop2, 333333L, 20, 0, 0, 0, 0 },
{ PIN_D4, doingSomethingStart3, doingSomethingStop3, 250000L, 30, 0, 0, 0, 0 },
{ PIN_D5, doingSomethingStart4, doingSomethingStop4, 200000L, 40, 0, 0, 0, 0 },
{ PIN_D12, doingSomethingStart5, doingSomethingStop5, 166667L, 45, 0, 0, 0, 0 },
{ PIN_D13, doingSomethingStart6, doingSomethingStop6, 142857L, 50, 0, 0, 0, 0 },
{ PIN_D14, doingSomethingStart7, doingSomethingStop7, 125000L, 55, 0, 0, 0, 0 },
{ PIN_D15, doingSomethingStart8, doingSomethingStop8, 111111L, 60, 0, 0, 0, 0 },
{ PIN_D16, doingSomethingStart9, doingSomethingStop9, 100000L, 65, 0, 0, 0, 0 },
{ PIN_D17, doingSomethingStart10, doingSomethingStop10, 66667L, 70, 0, 0, 0, 0 },
{ PIN_D18, doingSomethingStart11, doingSomethingStop11, 50000L, 75, 0, 0, 0, 0 },
{ PIN_D19, doingSomethingStart12, doingSomethingStop12, 40000L, 80, 0, 0, 0, 0 },
{ PIN_D21, doingSomethingStart13, doingSomethingStop13, 33333L, 85, 0, 0, 0, 0 },
{ PIN_D22, doingSomethingStart14, doingSomethingStop14, 25000L, 90, 0, 0, 0, 0 },
{ PIN_D23, doingSomethingStart15, doingSomethingStop15, 20000L, 95, 0, 0, 0, 0 }
};
#endif // #if USING_PWM_FREQUENCY
void doingSomethingStart(int index)
{
unsigned long currentMicros = micros();
curISR_PWM_Data[index].deltaMicrosStart = currentMicros - curISR_PWM_Data[index].previousMicrosStart;
curISR_PWM_Data[index].previousMicrosStart = currentMicros;
}
void doingSomethingStop(int index)
{
unsigned long currentMicros = micros();
//curISR_PWM_Data[index].deltaMicrosStop = currentMicros - curISR_PWM_Data[index].previousMicrosStop;
// Count from start to stop PWM pulse
curISR_PWM_Data[index].deltaMicrosStop = currentMicros - curISR_PWM_Data[index].previousMicrosStart;
curISR_PWM_Data[index].previousMicrosStop = currentMicros;
}
#else // #if USE_COMPLEX_STRUCT
irqCallback irqCallbackStartFunc[NUMBER_ISR_PWMS] =
{
doingSomethingStart0, doingSomethingStart1, doingSomethingStart2, doingSomethingStart3,
doingSomethingStart4, doingSomethingStart5, doingSomethingStart6, doingSomethingStart7,
doingSomethingStart8, doingSomethingStart9, doingSomethingStart10, doingSomethingStart11,
doingSomethingStart12, doingSomethingStart13, doingSomethingStart14, doingSomethingStart15
};
irqCallback irqCallbackStopFunc[NUMBER_ISR_PWMS] =
{
doingSomethingStop0, doingSomethingStop1, doingSomethingStop2, doingSomethingStop3,
doingSomethingStop4, doingSomethingStop5, doingSomethingStop6, doingSomethingStop7,
doingSomethingStop8, doingSomethingStop9, doingSomethingStop10, doingSomethingStop11,
doingSomethingStop12, doingSomethingStop13, doingSomethingStop14, doingSomethingStop15
};
#endif // #if USE_COMPLEX_STRUCT
//////////////////////////////////////////////////////
#define SIMPLE_TIMER_MS 2000L
// Init SimpleTimer
SimpleTimer simpleTimer;
// Here is software Timer, you can do somewhat fancy stuffs without many issues.
// But always avoid
// 1. Long delay() it just doing nothing and pain-without-gain wasting CPU power.Plan and design your code / strategy ahead
// 2. Very long "do", "while", "for" loops without predetermined exit time.
void simpleTimerDoingSomething2s()
{
static unsigned long previousMicrosStart = startMicros;
unsigned long currMicros = micros();
Serial.print(F("SimpleTimer (ms): ")); Serial.print(SIMPLE_TIMER_MS);
Serial.print(F(", us : ")); Serial.print(currMicros);
Serial.print(F(", Dus : ")); Serial.println(currMicros - previousMicrosStart);
for (uint16_t i = 0; i < NUMBER_ISR_PWMS; i++)
{
#if USE_COMPLEX_STRUCT
Serial.print(F("PWM Channel : ")); Serial.print(i);
Serial.print(F(", programmed Period (us): "));
#if USING_PWM_FREQUENCY
Serial.print(1000000 / curISR_PWM_Data[i].PWM_Freq);
#else
Serial.print(curISR_PWM_Data[i].PWM_Period);
#endif
Serial.print(F(", actual : ")); Serial.print(curISR_PWM_Data[i].deltaMicrosStart);
Serial.print(F(", programmed DutyCycle : "));
Serial.print(curISR_PWM_Data[i].PWM_DutyCycle);
Serial.print(F(", actual : ")); Serial.println((float) curISR_PWM_Data[i].deltaMicrosStop * 100.0f / curISR_PWM_Data[i].deltaMicrosStart);
#else
Serial.print(F("PWM Channel : ")); Serial.print(i);
#if USING_PWM_FREQUENCY
Serial.print(1000000 / PWM_Freq[i]);
#else
Serial.print(PWM_Period[i]);
#endif
Serial.print(F(", programmed Period (us): ")); Serial.print(PWM_Period[i]);
Serial.print(F(", actual : ")); Serial.print(deltaMicrosStart[i]);
Serial.print(F(", programmed DutyCycle : "));
Serial.print(PWM_DutyCycle[i]);
Serial.print(F(", actual : ")); Serial.println( (float) deltaMicrosStop[i] * 100.0f / deltaMicrosStart[i]);
#endif
}
previousMicrosStart = currMicros;
}
void setup()
{
Serial.begin(115200);
while (!Serial);
delay(2000);
Serial.print(F("\nStarting ISR_16_PWMs_Array_Complex on ")); Serial.println(ARDUINO_BOARD);
Serial.println(ESP32_PWM_VERSION);
Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
// Interval in microsecs
if (ITimer.attachInterruptInterval(HW_TIMER_INTERVAL_US, TimerHandler))
{
startMicros = micros();
Serial.print(F("Starting ITimer OK, micros() = ")); Serial.println(startMicros);
}
else
Serial.println(F("Can't set ITimer. Select another freq. or timer"));
startMicros = micros();
// Just to demonstrate, don't use too many ISR Timers if not absolutely necessary
// You can use up to 16 timer for each ISR_PWM
for (uint16_t i = 0; i < NUMBER_ISR_PWMS; i++)
{
#if USE_COMPLEX_STRUCT
curISR_PWM_Data[i].previousMicrosStart = startMicros;
//ISR_PWM.setInterval(curISR_PWM_Data[i].PWM_Period, curISR_PWM_Data[i].irqCallbackStartFunc);
//void setPWM(uint32_t pin, uint32_t frequency, uint32_t dutycycle
// , timer_callback_p StartCallback = nullptr, timer_callback_p StopCallback = nullptr)
#if USING_PWM_FREQUENCY
// You can use this with PWM_Freq in Hz
ISR_PWM.setPWM(curISR_PWM_Data[i].PWM_Pin, curISR_PWM_Data[i].PWM_Freq, curISR_PWM_Data[i].PWM_DutyCycle,
curISR_PWM_Data[i].irqCallbackStartFunc, curISR_PWM_Data[i].irqCallbackStopFunc);
#else
// Or You can use this with PWM_Period in us
ISR_PWM.setPWM_Period(curISR_PWM_Data[i].PWM_Pin, curISR_PWM_Data[i].PWM_Period, curISR_PWM_Data[i].PWM_DutyCycle,
curISR_PWM_Data[i].irqCallbackStartFunc, curISR_PWM_Data[i].irqCallbackStopFunc);
#endif
#else
previousMicrosStart[i] = micros();
#if USING_PWM_FREQUENCY
// You can use this with PWM_Freq in Hz
ISR_PWM.setPWM(PWM_Pin[i], PWM_Freq[i], PWM_DutyCycle[i], irqCallbackStartFunc[i], irqCallbackStopFunc[i]);
#else
// Or You can use this with PWM_Period in us
ISR_PWM.setPWM_Period(PWM_Pin[i], PWM_Period[i], PWM_DutyCycle[i], irqCallbackStartFunc[i], irqCallbackStopFunc[i]);
#endif
#endif
}
// You need this timer for non-critical tasks. Avoid abusing ISR if not absolutely necessary.
simpleTimer.setInterval(SIMPLE_TIMER_MS, simpleTimerDoingSomething2s);
}
#define BLOCKING_TIME_MS 10000L
void loop()
{
// This unadvised blocking task is used to demonstrate the blocking effects onto the execution and accuracy to Software timer
// You see the time elapse of ISR_PWM still accurate, whereas very unaccurate for Software Timer
// The time elapse for 2000ms software timer now becomes 3000ms (BLOCKING_TIME_MS)
// While that of ISR_PWM is still prefect.
delay(BLOCKING_TIME_MS);
// You need this Software timer for non-critical tasks. Avoid abusing ISR if not absolutely necessary
// You don't need to and never call ISR_PWM.run() here in the loop(). It's already handled by ISR timer.
simpleTimer.run();
}
The following is the sample terminal output when running example ISR_16_PWMs_Array_Complex to demonstrate the accuracy of ISR Hardware PWM-channels, especially when system is very busy. The ISR PWM-channels is running exactly according to corresponding programmed periods and duty-cycles
Starting ISR_16_PWMs_Array_Complex on ESP32_DEV
ESP32_PWM v1.1.1
CPU Frequency = 240 MHz
[PWM] ESP32_TimerInterrupt: _timerNo = 1 , _fre = 1000000
[PWM] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[PWM] _timerIndex = 1 , _timerGroup = 0
[PWM] _count = 0 - 20
[PWM] timer_set_alarm_value = 20.00
Starting ITimer OK, micros() = 2054206
Channel : 0 Period : 1000000 OnTime : 50000 Start_Time : 2054324
Channel : 1 Period : 500000 OnTime : 50000 Start_Time : 2054324
Channel : 2 Period : 333333 OnTime : 66666 Start_Time : 2054324
Channel : 3 Period : 250000 OnTime : 75000 Start_Time : 2054324
Channel : 4 Period : 200000 OnTime : 80000 Start_Time : 2054324
Channel : 5 Period : 166667 OnTime : 75000 Start_Time : 2054324
Channel : 6 Period : 142857 OnTime : 71428 Start_Time : 2054324
Channel : 7 Period : 125000 OnTime : 68750 Start_Time : 2054324
Channel : 8 Period : 111111 OnTime : 66666 Start_Time : 2054324
Channel : 9 Period : 100000 OnTime : 65000 Start_Time : 2054324
Channel : 10 Period : 66667 OnTime : 46666 Start_Time : 2054324
Channel : 11 Period : 50000 OnTime : 37500 Start_Time : 2054324
Channel : 12 Period : 40000 OnTime : 32000 Start_Time : 2054324
Channel : 13 Period : 33333 OnTime : 28333 Start_Time : 2054324
Channel : 14 Period : 25000 OnTime : 22500 Start_Time : 2054324
Channel : 15 Period : 20000 OnTime : 19000 Start_Time : 2054324
SimpleTimer (ms): 2000, us : 12150587, Dus : 10096281
PWM Channel : 0, programmed Period (us): 1000000, actual : 1000000, programmed DutyCycle : 5, actual : 5.00
PWM Channel : 1, programmed Period (us): 500000, actual : 500001, programmed DutyCycle : 10, actual : 10.00
PWM Channel : 2, programmed Period (us): 333333, actual : 333340, programmed DutyCycle : 20, actual : 20.00
PWM Channel : 3, programmed Period (us): 250000, actual : 250002, programmed DutyCycle : 30, actual : 30.00
PWM Channel : 4, programmed Period (us): 200000, actual : 200003, programmed DutyCycle : 40, actual : 40.00
PWM Channel : 5, programmed Period (us): 166667, actual : 166679, programmed DutyCycle : 45, actual : 45.00
PWM Channel : 6, programmed Period (us): 142857, actual : 142860, programmed DutyCycle : 50, actual : 49.99
PWM Channel : 7, programmed Period (us): 125000, actual : 124997, programmed DutyCycle : 55, actual : 54.99
PWM Channel : 8, programmed Period (us): 111111, actual : 111120, programmed DutyCycle : 60, actual : 59.99
PWM Channel : 9, programmed Period (us): 100000, actual : 99995, programmed DutyCycle : 65, actual : 65.00
PWM Channel : 10, programmed Period (us): 66667, actual : 66680, programmed DutyCycle : 70, actual : 69.98
PWM Channel : 11, programmed Period (us): 50000, actual : 49999, programmed DutyCycle : 75, actual : 75.00
PWM Channel : 12, programmed Period (us): 40000, actual : 40000, programmed DutyCycle : 80, actual : 80.00
PWM Channel : 13, programmed Period (us): 33333, actual : 33340, programmed DutyCycle : 85, actual : 84.94
PWM Channel : 14, programmed Period (us): 25000, actual : 25000, programmed DutyCycle : 90, actual : 90.00
PWM Channel : 15, programmed Period (us): 20000, actual : 20000, programmed DutyCycle : 95, actual : 95.00
SimpleTimer (ms): 2000, us : 22302463, Dus : 10151876
PWM Channel : 0, programmed Period (us): 1000000, actual : 1000000, programmed DutyCycle : 5, actual : 5.00
PWM Channel : 1, programmed Period (us): 500000, actual : 500001, programmed DutyCycle : 10, actual : 10.00
PWM Channel : 2, programmed Period (us): 333333, actual : 333340, programmed DutyCycle : 20, actual : 20.00
PWM Channel : 3, programmed Period (us): 250000, actual : 249998, programmed DutyCycle : 30, actual : 30.00
PWM Channel : 4, programmed Period (us): 200000, actual : 199997, programmed DutyCycle : 40, actual : 40.00
PWM Channel : 5, programmed Period (us): 166667, actual : 166681, programmed DutyCycle : 45, actual : 45.00
PWM Channel : 6, programmed Period (us): 142857, actual : 142860, programmed DutyCycle : 50, actual : 49.99
PWM Channel : 7, programmed Period (us): 125000, actual : 125001, programmed DutyCycle : 55, actual : 54.99
PWM Channel : 8, programmed Period (us): 111111, actual : 111120, programmed DutyCycle : 60, actual : 59.99
PWM Channel : 9, programmed Period (us): 100000, actual : 99999, programmed DutyCycle : 65, actual : 65.00
PWM Channel : 10, programmed Period (us): 66667, actual : 66680, programmed DutyCycle : 70, actual : 69.98
PWM Channel : 11, programmed Period (us): 50000, actual : 50001, programmed DutyCycle : 75, actual : 75.00
PWM Channel : 12, programmed Period (us): 40000, actual : 39999, programmed DutyCycle : 80, actual : 80.00
PWM Channel : 13, programmed Period (us): 33333, actual : 33341, programmed DutyCycle : 85, actual : 84.94
PWM Channel : 14, programmed Period (us): 25000, actual : 25000, programmed DutyCycle : 90, actual : 90.00
PWM Channel : 15, programmed Period (us): 20000, actual : 20000, programmed DutyCycle : 95, actual : 95.00
The following is the sample terminal output when running example ISR_16_PWMs_Array to demonstrate how to use multiple Hardware PWM channels.
Starting ISR_16_PWMs_Array on ESP32_DEV
ESP32_PWM v1.1.1
CPU Frequency = 240 MHz
[PWM] ESP32_TimerInterrupt: _timerNo = 1 , _fre = 1000000
[PWM] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[PWM] _timerIndex = 1 , _timerGroup = 0
[PWM] _count = 0 - 20
[PWM] timer_set_alarm_value = 20.00
Starting ITimer OK, micros() = 2054192
Channel : 0 Period : 1000000 OnTime : 50000 Start_Time : 2054324
Channel : 1 Period : 500000 OnTime : 50000 Start_Time : 2054324
Channel : 2 Period : 333333 OnTime : 66666 Start_Time : 2054324
Channel : 3 Period : 250000 OnTime : 75000 Start_Time : 2054324
Channel : 4 Period : 200000 OnTime : 80000 Start_Time : 2054324
Channel : 5 Period : 166666 OnTime : 74999 Start_Time : 2054324
Channel : 6 Period : 142857 OnTime : 71428 Start_Time : 2054324
Channel : 7 Period : 125000 OnTime : 68750 Start_Time : 2054324
Channel : 8 Period : 111111 OnTime : 66666 Start_Time : 2054324
Channel : 9 Period : 100000 OnTime : 65000 Start_Time : 2054324
Channel : 10 Period : 66666 OnTime : 46666 Start_Time : 2054324
Channel : 11 Period : 50000 OnTime : 37500 Start_Time : 2054324
Channel : 12 Period : 40000 OnTime : 32000 Start_Time : 2054324
Channel : 13 Period : 33333 OnTime : 28333 Start_Time : 2054324
Channel : 14 Period : 25000 OnTime : 22500 Start_Time : 2054324
Channel : 15 Period : 20000 OnTime : 19000 Start_Time : 2054324
The following is the sample terminal output when running example ISR_16_PWMs_Array_Simple to demonstrate how to use multiple Hardware PWM channels.
Starting ISR_16_PWMs_Array_Simple on ESP32_DEV
ESP32_PWM v1.1.1
CPU Frequency = 240 MHz
[PWM] ESP32_TimerInterrupt: _timerNo = 1 , _fre = 1000000
[PWM] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[PWM] _timerIndex = 1 , _timerGroup = 0
[PWM] _count = 0 - 20
[PWM] timer_set_alarm_value = 20.00
Starting ITimer OK, micros() = 2054249
Channel : 0 Period : 1000000 OnTime : 50000 Start_Time : 2054372
Channel : 1 Period : 500000 OnTime : 50000 Start_Time : 2054372
Channel : 2 Period : 333333 OnTime : 66666 Start_Time : 2054372
Channel : 3 Period : 250000 OnTime : 75000 Start_Time : 2054372
Channel : 4 Period : 200000 OnTime : 80000 Start_Time : 2054372
Channel : 5 Period : 166666 OnTime : 74999 Start_Time : 2054372
Channel : 6 Period : 142857 OnTime : 71428 Start_Time : 2054372
Channel : 7 Period : 125000 OnTime : 68750 Start_Time : 2054372
Channel : 8 Period : 111111 OnTime : 66666 Start_Time : 2054372
Channel : 9 Period : 100000 OnTime : 65000 Start_Time : 2054372
Channel : 10 Period : 66666 OnTime : 46666 Start_Time : 2054372
Channel : 11 Period : 50000 OnTime : 37500 Start_Time : 2054372
Channel : 12 Period : 40000 OnTime : 32000 Start_Time : 2054372
Channel : 13 Period : 33333 OnTime : 28333 Start_Time : 2054372
Channel : 14 Period : 25000 OnTime : 22500 Start_Time : 2054372
Channel : 15 Period : 20000 OnTime : 19000 Start_Time : 2054372
The following is the sample terminal output when running example ISR_Modify_PWM on ESP32_DEV to demonstrate how to modify PWM settings on-the-fly without deleting the PWM channel
Starting ISR_Modify_PWM on ESP32_DEV
ESP32_PWM v1.1.1
CPU Frequency = 240 MHz
[PWM] ESP32_TimerInterrupt: _timerNo = 1 , _fre = 1000000
[PWM] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[PWM] _timerIndex = 1 , _timerGroup = 0
[PWM] _count = 0 - 20
[PWM] timer_set_alarm_value = 20.00
Starting ITimer OK, micros() = 2058106
Using PWM Freq = 1.00, PWM DutyCycle = 10
Channel : 0 Period : 1000000 OnTime : 100000 Start_Time : 2058634
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 12070032
Channel : 0 Period : 1000000 OnTime : 100000 Start_Time : 22071014
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 32072016
Channel : 0 Period : 1000000 OnTime : 100000 Start_Time : 42073014
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 52074016
Channel : 0 Period : 1000000 OnTime : 100000 Start_Time : 62075014
The following is the sample terminal output when running example ISR_Changing_PWM on ESP32_DEV to demonstrate how to modify PWM settings on-the-fly by deleting the PWM channel and reinit the PWM channel
Starting ISR_Changing_PWM on ESP32_DEV
ESP32_PWM v1.1.1
CPU Frequency = 240 MHz
[PWM] ESP32_TimerInterrupt: _timerNo = 1 , _fre = 1000000
[PWM] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[PWM] _timerIndex = 1 , _timerGroup = 0
[PWM] _count = 0 - 20
[PWM] timer_set_alarm_value = 20.00
Starting ITimer OK, micros() = 2058129
Using PWM Freq = 1.00, PWM DutyCycle = 50
Channel : 0 Period : 1000000 OnTime : 500000 Start_Time : 2058667
Using PWM Freq = 2.00, PWM DutyCycle = 90
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 12068785
Using PWM Freq = 1.00, PWM DutyCycle = 50
Channel : 0 Period : 1000000 OnTime : 500000 Start_Time : 22068823
Using PWM Freq = 2.00, PWM DutyCycle = 90
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 32068768
The following is the sample terminal output when running example ISR_Modify_PWM on ESP32S2_DEV to demonstrate how to modify PWM settings on-the-fly without deleting the PWM channel
Starting ISR_Modify_PWM on ESP32S2_DEV
ESP32_PWM v1.1.1
CPU Frequency = 240 MHz
[PWM] ESP32_S2_TimerInterrupt: _timerNo = 1 , _fre = 1000000
[PWM] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[PWM] _timerIndex = 1 , _timerGroup = 0
[PWM] _count = 0 - 20
[PWM] timer_set_alarm_value = 20.00
Starting ITimer OK, micros() = 2570882
Using PWM Freq = 1.00, PWM DutyCycle = 10
Channel : 0 Period : 1000000 OnTime : 100000 Start_Time : 2581465
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 12590688
Channel : 0 Period : 1000000 OnTime : 100000 Start_Time : 22595680
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 32600680
The following is the sample terminal output when running example ISR_Changing_PWM on ESP32S2_DEV to demonstrate how to modify PWM settings on-the-fly by deleting the PWM channel and reinit the PWM channel
Starting ISR_Changing_PWM on ESP32S2_DEV
ESP32_PWM v1.1.1
CPU Frequency = 240 MHz
[PWM] ESP32_S2_TimerInterrupt: _timerNo = 1 , _fre = 1000000
[PWM] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[PWM] _timerIndex = 1 , _timerGroup = 0
[PWM] _count = 0 - 20
[PWM] timer_set_alarm_value = 20.00
Starting ITimer OK, micros() = 2571406
Using PWM Freq = 1.00, PWM DutyCycle = 50
Channel : 0 Period : 1000000 OnTime : 500000 Start_Time : 2576406
Using PWM Freq = 2.00, PWM DutyCycle = 90
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 12586347
Using PWM Freq = 1.00, PWM DutyCycle = 50
Channel : 0 Period : 1000000 OnTime : 500000 Start_Time : 22591327
Using PWM Freq = 2.00, PWM DutyCycle = 90
Channel : 0 Period : 500000 OnTime : 450000 Start_Time : 32591326
Using PWM Freq = 1.00, PWM DutyCycle = 50
Channel : 0 Period : 1000000 OnTime : 500000 Start_Time : 42596324
Debug is enabled by default on Serial.
You can also change the debugging level _PWM_LOGLEVEL_
from 0 to 4
// These define's must be placed at the beginning before #include "ESP32_PWM.h"
// _PWM_LOGLEVEL_ from 0 to 4
// Don't define _PWM_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define _PWM_LOGLEVEL_ 4
If you get compilation errors, more often than not, you may need to install a newer version of the core for Arduino boards.
Sometimes, the library will only work if you update the board core to the latest version because I am using newly added functions.
Submit issues to: ESP32_PWM issues
- Search for bug and improvement.
- Similar features for remaining Arduino boards such as SAMD21, SAMD51, SAM-DUE, nRF52, ESP8266, STM32, Portenta_H7, RP2040, etc.
- Basic hardware PWM-channels for ESP32 and ESP32-S2 for ESP32 core v2.0.0+
- Longer time interval
- Add complex examples.
- Add functions to modify PWM settings on-the-fly
- Fix examples to use with ESP32 core v2.0.1+
Many thanks for everyone for bug reporting, new feature suggesting, testing and contributing to the development of this library.
If you want to contribute to this project:
- Report bugs and errors
- Ask for enhancements
- Create issues and pull requests
- Tell other people about this library
- The library is licensed under MIT
Copyright 2021- Khoi Hoang