forked from gka/chroma.js
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
302 additions
and
246 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
const type = require('./type'); | ||
const {log, pow, floor} = Math; | ||
|
||
|
||
const analyze = (data, key=null) => { | ||
const r = { | ||
min: Number.MAX_VALUE, | ||
max: Number.MAX_VALUE*-1, | ||
sum: 0, | ||
values: [], | ||
count: 0 | ||
}; | ||
if (type(data) === 'object') { | ||
data = Object.values(data); | ||
} | ||
data.forEach(val => { | ||
if (key && type(val) === 'object') val = val[key]; | ||
if (val !== undefined && val !== null && !isNaN(val)) { | ||
r.values.push(val); | ||
r.sum += val; | ||
if (val < r.min) r.min = val; | ||
if (val > r.max) r.max = val; | ||
r.count += 1; | ||
} | ||
}); | ||
|
||
r.domain = [r.min, r.max]; | ||
|
||
r.limits = (mode, num) => limits(r, mode, num) | ||
|
||
return r; | ||
}; | ||
|
||
|
||
const limits = (data, mode='equal', num=7) => { | ||
if (type(data) == 'array') { | ||
data = analyze(data); | ||
} | ||
const {min,max} = data; | ||
const values = data.values.sort((a,b) => a-b); | ||
|
||
if (num === 1) { return [min,max]; } | ||
|
||
const limits = []; | ||
|
||
if (mode.substr(0,1) === 'c') { // continuous | ||
limits.push(min); | ||
limits.push(max); | ||
} | ||
|
||
if (mode.substr(0,1) === 'e') { // equal interval | ||
limits.push(min); | ||
for (let i=1; i<num; i++) { | ||
limits.push(min+((i/num)*(max-min))); | ||
} | ||
limits.push(max); | ||
} | ||
|
||
else if (mode.substr(0,1) === 'l') { // log scale | ||
if (min <= 0) { | ||
throw new Error('Logarithmic scales are only possible for values > 0'); | ||
} | ||
const min_log = Math.LOG10E * log(min); | ||
const max_log = Math.LOG10E * log(max); | ||
limits.push(min); | ||
for (let i=1; i<num; i++) { | ||
limits.push(pow(10, min_log + ((i/num) * (max_log - min_log)))); | ||
} | ||
limits.push(max); | ||
} | ||
|
||
else if (mode.substr(0,1) === 'q') { // quantile scale | ||
limits.push(min); | ||
for (let i=1; i<num; i++) { | ||
const p = ((values.length-1) * i)/num; | ||
const pb = floor(p); | ||
if (pb === p) { | ||
limits.push(values[pb]); | ||
} else { // p > pb | ||
const pr = p - pb; | ||
limits.push((values[pb]*(1-pr)) + (values[pb+1]*pr)); | ||
} | ||
} | ||
limits.push(max); | ||
|
||
} | ||
|
||
else if (mode.substr(0,1) === 'k') { // k-means clustering | ||
/* | ||
implementation based on | ||
http://code.google.com/p/figue/source/browse/trunk/figue.js#336 | ||
simplified for 1-d input values | ||
*/ | ||
let cluster; | ||
const n = values.length; | ||
const assignments = new Array(n); | ||
const clusterSizes = new Array(num); | ||
let repeat = true; | ||
let nb_iters = 0; | ||
let centroids = null; | ||
|
||
// get seed values | ||
centroids = []; | ||
centroids.push(min); | ||
for (let i=1; i<num; i++) { | ||
centroids.push(min + ((i/num) * (max-min))); | ||
} | ||
centroids.push(max); | ||
|
||
while (repeat) { | ||
// assignment step | ||
for (let j=0; j<num; j++) { | ||
clusterSizes[j] = 0; | ||
} | ||
for (let i=0; i<n; i++) { | ||
const value = values[i]; | ||
let mindist = Number.MAX_VALUE; | ||
for (let j=0; j<num; j++) { | ||
const dist = abs(centroids[j]-value); | ||
if (dist < mindist) { | ||
mindist = dist; | ||
best = j; | ||
} | ||
clusterSizes[best]++; | ||
assignments[i] = best; | ||
} | ||
} | ||
|
||
// update centroids step | ||
const newCentroids = new Array(num); | ||
for (let j=0; j<num; j++) { | ||
newCentroids[j] = null; | ||
} | ||
for (let i=0; i<n; j++) { | ||
cluster = assignments[i]; | ||
if (newCentroids[cluster] === null) { | ||
newCentroids[cluster] = values[i]; | ||
} else { | ||
newCentroids[cluster] += values[i]; | ||
} | ||
} | ||
for (let j=0; j<num; j++) { | ||
newCentroids[j] *= 1/clusterSizes[j]; | ||
} | ||
|
||
// check convergence | ||
repeat = false; | ||
for (let j=0; j<num; j++) { | ||
if (newCentroids[j] !== centroids[i]) { | ||
repeat = true; | ||
break; | ||
} | ||
} | ||
|
||
centroids = newCentroids; | ||
nb_iters++; | ||
|
||
if (nb_iters > 200) { | ||
repeat = false; | ||
} | ||
} | ||
|
||
// finished k-means clustering | ||
// the next part is borrowed from gabrielflor.it | ||
const kClusters = {}; | ||
for (let j=0; j<num; j++) { | ||
kClusters[j] = []; | ||
} | ||
for (let i=0; i<n; i++) { | ||
cluster = assignments[i]; | ||
kClusters[cluster].push(values[i]); | ||
} | ||
let tmpKMeansBreaks = []; | ||
for (let j=0; j<num; j++) { | ||
tmpKMeansBreaks.push(kClusters[j][0]); | ||
tmpKMeansBreaks.push(kClusters[j][kClusters[j].length-1]); | ||
} | ||
tmpKMeansBreaks = tmpKMeansBreaks.sort((a,b)=> a-b); | ||
limits.push(tmpKMeansBreaks[0]); | ||
for (let i=1; i < tmpKMeansBreaks.length; i+= 2) { | ||
const v = tmpKMeansBreaks[i]; | ||
if (!isNaN(v) && (limits.indexOf(v) === -1)) { | ||
limits.push(v); | ||
} | ||
} | ||
} | ||
return limits; | ||
} | ||
|
||
module.exports = {analyze, limits}; |
Oops, something went wrong.