-
Notifications
You must be signed in to change notification settings - Fork 42
/
inference.py
394 lines (328 loc) · 15.6 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"""
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py
"""
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from MovieChat.common.config import Config
from MovieChat.common.dist_utils import get_rank
from MovieChat.common.registry import registry
from MovieChat.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle
import decord
import cv2
import time
import subprocess
from moviepy.editor import VideoFileClip
from decord import VideoReader
decord.bridge.set_bridge('torch')
#%%
# imports modules for registration
from MovieChat.datasets.builders import *
from MovieChat.models import *
from MovieChat.processors import *
from MovieChat.runners import *
from MovieChat.tasks import *
from moviepy.editor import*
import random as rnd
from transformers import StoppingCriteria, StoppingCriteriaList
from PIL import Image
import GPUtil
import gradio as gr
MAX_INT = 8
N_SAMPLES = 128
SHORT_MEMORY_Length = 18
#%%
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--num-beams", type=int, default=1)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--text-query", required=True, help="question the video")
parser.add_argument("--video-path", required=True, help="path to video file.")
parser.add_argument("--fragment-video-path", required=True, help="path to video fragment file.")
parser.add_argument("--cur-sec", type=int, default=2, help="current minute")
parser.add_argument("--cur-min", type=int, default=15, help="current second")
parser.add_argument("--middle-video", type=int)
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config_seed):
seed = config_seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
def video_duration(filename):
result = subprocess.run(["ffprobe", "-v", "error", "-show_entries",
"format=duration", "-of",
"default=noprint_wrappers=1:nokey=1", filename],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
return float(result.stdout)
def capture_video(video_path, fragment_video_path, per_video_length, n_stage):
start_time = n_stage * per_video_length
end_time = (n_stage+1) * per_video_length
video =CompositeVideoClip([VideoFileClip(video_path).subclip(start_time,end_time)])
video.write_videofile(fragment_video_path)
def load_video(video_path, n_frms=MAX_INT, height=-1, width=-1, sampling="uniform", return_msg = False):
decord.bridge.set_bridge("torch")
vr = VideoReader(uri=video_path, height=height, width=width)
vlen = len(vr)
start, end = 0, vlen
n_frms = min(n_frms, vlen)
if sampling == "uniform":
indices = np.arange(start, end, vlen / n_frms).astype(int).tolist()
elif sampling == "headtail":
indices_h = sorted(rnd.sample(range(vlen // 2), n_frms // 2))
indices_t = sorted(rnd.sample(range(vlen // 2, vlen), n_frms // 2))
indices = indices_h + indices_t
else:
raise NotImplementedError
# get_batch -> T, H, W, C
temp_frms = vr.get_batch(indices)
tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
frms = tensor_frms.permute(3, 0, 1, 2).float() # (C, T, H, W)
if not return_msg:
return frms
fps = float(vr.get_avg_fps())
sec = ", ".join([str(round(f / fps, 1)) for f in indices])
# " " should be added in the start and end
msg = f"The video contains {len(indices)} frames sampled at {sec} seconds. "
return frms, msg
def parse_video_fragment(video_path, video_length, n_stage = 0, n_samples = N_SAMPLES):
decord.bridge.set_bridge("torch")
per_video_length = video_length / n_samples
# cut video from per_video_length(n_stage-1, n_stage)
fragment_video_path = "src/video_fragment/output.mp4"
capture_video(video_path, fragment_video_path, per_video_length, n_stage)
return fragment_video_path
class Chat:
def __init__(self, model, vis_processor, device='cuda:0'):
self.device = device
self.output_text = " "
self.model = model
self.vis_processor = vis_processor
self.image_vis_processor = Blip2ImageEvalProcessor()
stop_words_ids = [torch.tensor([835]).to(self.device),
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
def get_context_emb(self, input_text, msg, img_list):
prompt_1 = "You are able to understand the visual content that the user provides.Follow the instructions carefully and explain your answers in details.###Human: <Video><ImageHere></Video>"
prompt_2 = input_text
prompt_3 = "###Assistant:"
prompt = prompt_1 + " " + prompt_2 + prompt_3
prompt_segs = prompt.split('<ImageHere>')
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.model.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
# only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs
def gradio_answer(self,chatbot, chat_state):
# chatbot[-1][1] = llm_message
# print(chat_state.get_prompt())
print(chat_state)
import pdb;pdb.set_trace()
return gr.update(value=self.output_text, interactive=False),None
def answer(self, img_list, input_text, msg, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000):
embs = self.get_context_emb(input_text, msg, img_list)
current_max_len = embs.shape[1] + max_new_tokens
if current_max_len - max_length > 0:
print('Warning: The number of tokens in current conversation exceeds the max length. '
'The model will not see the contexts outside the range.')
begin_idx = max(0, current_max_len - max_length)
embs = embs[:, begin_idx:]
outputs = self.model.llama_model.generate(
inputs_embeds=embs,
max_new_tokens=max_new_tokens,
stopping_criteria=self.stopping_criteria,
num_beams=num_beams,
do_sample=True,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
output_token = outputs[0]
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
output_token = output_token[1:]
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
output_text = output_text.split('###')[0] # remove the stop sign '###'
output_text = output_text.split('Assistant:')[-1].strip()
return output_text, output_token.cpu().numpy()
def cal_frame(self, video_length, cur_min, cur_sec, middle_video):
per_frag_second = video_length / N_SAMPLES
if middle_video:
cur_seconds = cur_min * 60 + cur_sec
num_frames = int(cur_seconds / per_frag_second)
per_frame_second = per_frag_second/SHORT_MEMORY_Length
cur_frame = int((cur_seconds-per_frag_second*num_frames)/per_frame_second)
return num_frames, cur_frame
else:
cur_frame = 0
num_frames = int(video_length / per_frag_second)
return num_frames, cur_frame
def upload_video_without_audio(self, video_path, fragment_video_path, cur_min, cur_sec, cur_image, img_list, middle_video):
msg = ""
if isinstance(video_path, str): # is a video path
ext = os.path.splitext(video_path)[-1].lower()
print(video_path)
video_length = video_duration(video_path)
num_frames, cur_frame = self.cal_frame(video_length, cur_min, cur_sec, middle_video)
if num_frames == 0:
video_fragment = parse_video_fragment(video_path=video_path, video_length=video_length, n_stage=0, n_samples= N_SAMPLES)
video_fragment, msg = load_video(
video_path=fragment_video_path,
n_frms=MAX_INT,
height=224,
width=224,
sampling ="uniform", return_msg = True
)
video_fragment = self.vis_processor.transform(video_fragment)
video_fragment = video_fragment.unsqueeze(0).to(self.device)
self.model.encode_short_memory_frame(video_fragment, cur_frame)
else:
for i in range(num_frames):
print(i)
video_fragment = parse_video_fragment(video_path=video_path, video_length=video_length, n_stage=i, n_samples= N_SAMPLES)
video_fragment, msg = load_video(
video_path=fragment_video_path,
n_frms=MAX_INT,
height=224,
width=224,
sampling ="uniform", return_msg = True
)
video_fragment = self.vis_processor.transform(video_fragment)
video_fragment = video_fragment.unsqueeze(0).to(self.device)
if middle_video and (i+1)==num_frames:
self.model.encode_short_memory_frame(video_fragment, cur_frame)
else:
self.model.encode_short_memory_frame(video_fragment)
else:
raise NotImplementedError
video_emb, _ = self.model.encode_long_video(cur_image, middle_video)
img_list.append(video_emb)
return msg
def gener_infer(self, video_path, text_input, num_beams, temperature, libraries, minute, second):
print("here")
fragment_video_path = "src/video_fragment/output.mp4"
cur_min = minute if minute is not None else int(0)
cur_sec = second if second is not None else int(0)
if libraries is not None:
cap = cv2.VideoCapture(video_path)
if libraries[0] == "Breakpoint mode":
fps_video = cap.get(cv2.CAP_PROP_FPS)
self.model.middle_video = True
self.model.question_minute = minute
self.model.question_second = second
cur_fps = fps_video * (60*minute + second)
else:
cur_fps = 0
self.model.middle_video = False
cap.set(cv2.CAP_PROP_POS_FRAMES, cur_fps)
ret, frame = cap.read()
temp_frame_path = 'src/output_frame/snapshot.jpg'
cv2.imwrite(temp_frame_path, frame)
raw_image = Image.open(temp_frame_path).convert('RGB')
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device) # [1,3,1,224,224]
cur_image = self.model.encode_image(image)
img_list = []
msg = self.upload_video_without_audio(
video_path=video_path,
fragment_video_path=fragment_video_path,
cur_min=cur_min,
cur_sec=cur_sec,
cur_image = cur_image,
img_list=img_list,
middle_video = self.model.middle_video,
)
llm_message = self.answer(img_list=img_list,
input_text=text_input,
msg = msg,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
self.output_text = llm_message
print(self.output_text)
if __name__ =='__main__':
config_seed = 42
setup_seeds(config_seed)
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
video_path = args.video_path
fragment_video_path = args.fragment_video_path
cur_min = args.cur_min
cur_sec = args.cur_sec
middle_video = args.middle_video
cap = cv2.VideoCapture(video_path)
fps_video = cap.get(cv2.CAP_PROP_FPS)
cur_fps = fps_video * (60*cur_min + cur_sec)
cap = cv2.VideoCapture(video_path)
cap.set(cv2.CAP_PROP_POS_FRAMES, cur_fps)
ret, frame = cap.read()
temp_frame_path = 'src/output_frame/snapshot.jpg'
cv2.imwrite(temp_frame_path, frame)
raw_image = Image.open(temp_frame_path).convert('RGB')
image = chat.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(chat.device) # [1,3,1,224,224]
cur_image = chat.model.encode_image(image)
middle_video = middle_video == 1
img_list = []
msg = chat.upload_video_without_audio(
video_path=video_path,
fragment_video_path=fragment_video_path,
cur_min=cur_min,
cur_sec=cur_sec,
cur_image = cur_image,
img_list=img_list,
middle_video = middle_video,
)
text_input = args.text_query
num_beams = args.num_beams
temperature = args.temperature
llm_message = chat.answer(img_list=img_list,
input_text=text_input,
msg = msg,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
print(llm_message)