Skip to content

Pytorch Implementation For LPRNet, A High Performance And Lightweight License Plate Recognition Framework.

License

Notifications You must be signed in to change notification settings

robotseye/LPRNet_Pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LPRNet_Pytorch

Pytorch Implementation For LPRNet, A High Performance And Lightweight License Plate Recognition Framework.
完全适用于中国车牌识别(Chinese License Plate Recognition)及国外车牌识别!
目前仅支持同时识别蓝牌和绿牌即新能源车牌等中国车牌,但可通过扩展训练数据或微调支持其他类型车牌及提高识别准确率!

dependencies

  • pytorch >= 1.0.0
  • opencv-python 3.x
  • python 3.x
  • imutils
  • Pillow
  • numpy

pretrained model

training and testing

  1. prepare your datasets, image size must be 94x24.
  2. base on your datsets path modify the scripts its hyperparameters --train_img_dirs or --test_img_dirs.
  3. adjust other hyperparameters if need.
  4. run 'python train_LPRNet.py' or 'python test_LPRNet.py'.
  5. if want to show testing result, add '--show true' or '--show 1' to run command.

performance

  • personal test datasets.
  • include blue/green license plate.
  • images are very widely.
  • total test images number is 27320.
size personal test imgs(%) inference@gtx 1060(ms)
1.7M 96.0+ 0.5-

References

  1. LPRNet: License Plate Recognition via Deep Neural Networks
  2. PyTorch中文文档

postscript

If you found this useful, please give me a star, thanks!

About

Pytorch Implementation For LPRNet, A High Performance And Lightweight License Plate Recognition Framework.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%