forked from graykode/nlp-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
1,908 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"metadata": {}, | ||
"source": [ | ||
"# code by Tae Hwan Jung @graykode\n", | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"import torch.optim as optim\n", | ||
"\n", | ||
"def make_batch():\n", | ||
" input_batch = []\n", | ||
" target_batch = []\n", | ||
"\n", | ||
" for sen in sentences:\n", | ||
" word = sen.split() # space tokenizer\n", | ||
" input = [word_dict[n] for n in word[:-1]] # create (1~n-1) as input\n", | ||
" target = word_dict[word[-1]] # create (n) as target, We usually call this 'casual language model'\n", | ||
"\n", | ||
" input_batch.append(input)\n", | ||
" target_batch.append(target)\n", | ||
"\n", | ||
" return input_batch, target_batch\n", | ||
"\n", | ||
"# Model\n", | ||
"class NNLM(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(NNLM, self).__init__()\n", | ||
" self.C = nn.Embedding(n_class, m)\n", | ||
" self.H = nn.Linear(n_step * m, n_hidden, bias=False)\n", | ||
" self.d = nn.Parameter(torch.ones(n_hidden))\n", | ||
" self.U = nn.Linear(n_hidden, n_class, bias=False)\n", | ||
" self.W = nn.Linear(n_step * m, n_class, bias=False)\n", | ||
" self.b = nn.Parameter(torch.ones(n_class))\n", | ||
"\n", | ||
" def forward(self, X):\n", | ||
" X = self.C(X) # X : [batch_size, n_step, n_class]\n", | ||
" X = X.view(-1, n_step * m) # [batch_size, n_step * n_class]\n", | ||
" tanh = torch.tanh(self.d + self.H(X)) # [batch_size, n_hidden]\n", | ||
" output = self.b + self.W(X) + self.U(tanh) # [batch_size, n_class]\n", | ||
" return output\n", | ||
"\n", | ||
"if __name__ == '__main__':\n", | ||
" n_step = 2 # number of steps, n-1 in paper\n", | ||
" n_hidden = 2 # number of hidden size, h in paper\n", | ||
" m = 2 # embedding size, m in paper\n", | ||
"\n", | ||
" sentences = [\"i like dog\", \"i love coffee\", \"i hate milk\"]\n", | ||
"\n", | ||
" word_list = \" \".join(sentences).split()\n", | ||
" word_list = list(set(word_list))\n", | ||
" word_dict = {w: i for i, w in enumerate(word_list)}\n", | ||
" number_dict = {i: w for i, w in enumerate(word_list)}\n", | ||
" n_class = len(word_dict) # number of Vocabulary\n", | ||
"\n", | ||
" model = NNLM()\n", | ||
"\n", | ||
" criterion = nn.CrossEntropyLoss()\n", | ||
" optimizer = optim.Adam(model.parameters(), lr=0.001)\n", | ||
"\n", | ||
" input_batch, target_batch = make_batch()\n", | ||
" input_batch = torch.LongTensor(input_batch)\n", | ||
" target_batch = torch.LongTensor(target_batch)\n", | ||
"\n", | ||
" # Training\n", | ||
" for epoch in range(5000):\n", | ||
" optimizer.zero_grad()\n", | ||
" output = model(input_batch)\n", | ||
"\n", | ||
" # output : [batch_size, n_class], target_batch : [batch_size]\n", | ||
" loss = criterion(output, target_batch)\n", | ||
" if (epoch + 1) % 1000 == 0:\n", | ||
" print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))\n", | ||
"\n", | ||
" loss.backward()\n", | ||
" optimizer.step()\n", | ||
"\n", | ||
" # Predict\n", | ||
" predict = model(input_batch).data.max(1, keepdim=True)[1]\n", | ||
"\n", | ||
" # Test\n", | ||
" print([sen.split()[:2] for sen in sentences], '->', [number_dict[n.item()] for n in predict.squeeze()])" | ||
], | ||
"outputs": [], | ||
"execution_count": null | ||
} | ||
], | ||
"metadata": { | ||
"anaconda-cloud": {}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"metadata": {}, | ||
"source": [ | ||
"# code by Tae Hwan Jung @graykode\n", | ||
"import numpy as np\n", | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"import torch.optim as optim\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"def random_batch():\n", | ||
" random_inputs = []\n", | ||
" random_labels = []\n", | ||
" random_index = np.random.choice(range(len(skip_grams)), batch_size, replace=False)\n", | ||
"\n", | ||
" for i in random_index:\n", | ||
" random_inputs.append(np.eye(voc_size)[skip_grams[i][0]]) # target\n", | ||
" random_labels.append(skip_grams[i][1]) # context word\n", | ||
"\n", | ||
" return random_inputs, random_labels\n", | ||
"\n", | ||
"# Model\n", | ||
"class Word2Vec(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(Word2Vec, self).__init__()\n", | ||
" # W and WT is not Traspose relationship\n", | ||
" self.W = nn.Linear(voc_size, embedding_size, bias=False) # voc_size > embedding_size Weight\n", | ||
" self.WT = nn.Linear(embedding_size, voc_size, bias=False) # embedding_size > voc_size Weight\n", | ||
"\n", | ||
" def forward(self, X):\n", | ||
" # X : [batch_size, voc_size]\n", | ||
" hidden_layer = self.W(X) # hidden_layer : [batch_size, embedding_size]\n", | ||
" output_layer = self.WT(hidden_layer) # output_layer : [batch_size, voc_size]\n", | ||
" return output_layer\n", | ||
"\n", | ||
"if __name__ == '__main__':\n", | ||
" batch_size = 2 # mini-batch size\n", | ||
" embedding_size = 2 # embedding size\n", | ||
"\n", | ||
" sentences = [\"apple banana fruit\", \"banana orange fruit\", \"orange banana fruit\",\n", | ||
" \"dog cat animal\", \"cat monkey animal\", \"monkey dog animal\"]\n", | ||
"\n", | ||
" word_sequence = \" \".join(sentences).split()\n", | ||
" word_list = \" \".join(sentences).split()\n", | ||
" word_list = list(set(word_list))\n", | ||
" word_dict = {w: i for i, w in enumerate(word_list)}\n", | ||
" voc_size = len(word_list)\n", | ||
"\n", | ||
" # Make skip gram of one size window\n", | ||
" skip_grams = []\n", | ||
" for i in range(1, len(word_sequence) - 1):\n", | ||
" target = word_dict[word_sequence[i]]\n", | ||
" context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]]\n", | ||
" for w in context:\n", | ||
" skip_grams.append([target, w])\n", | ||
"\n", | ||
" model = Word2Vec()\n", | ||
"\n", | ||
" criterion = nn.CrossEntropyLoss()\n", | ||
" optimizer = optim.Adam(model.parameters(), lr=0.001)\n", | ||
"\n", | ||
" # Training\n", | ||
" for epoch in range(5000):\n", | ||
" input_batch, target_batch = random_batch()\n", | ||
" input_batch = torch.Tensor(input_batch)\n", | ||
" target_batch = torch.LongTensor(target_batch)\n", | ||
"\n", | ||
" optimizer.zero_grad()\n", | ||
" output = model(input_batch)\n", | ||
"\n", | ||
" # output : [batch_size, voc_size], target_batch : [batch_size] (LongTensor, not one-hot)\n", | ||
" loss = criterion(output, target_batch)\n", | ||
" if (epoch + 1) % 1000 == 0:\n", | ||
" print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))\n", | ||
"\n", | ||
" loss.backward()\n", | ||
" optimizer.step()\n", | ||
"\n", | ||
" for i, label in enumerate(word_list):\n", | ||
" W, WT = model.parameters()\n", | ||
" x, y = W[0][i].item(), W[1][i].item()\n", | ||
" plt.scatter(x, y)\n", | ||
" plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')\n", | ||
" plt.show()\n" | ||
], | ||
"outputs": [], | ||
"execution_count": null | ||
} | ||
], | ||
"metadata": { | ||
"anaconda-cloud": {}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"metadata": {}, | ||
"source": [ | ||
"# code by Tae Hwan Jung @graykode\n", | ||
"import numpy as np\n", | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"import torch.optim as optim\n", | ||
"import torch.nn.functional as F\n", | ||
"\n", | ||
"class TextCNN(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(TextCNN, self).__init__()\n", | ||
" self.num_filters_total = num_filters * len(filter_sizes)\n", | ||
" self.W = nn.Embedding(vocab_size, embedding_size)\n", | ||
" self.Weight = nn.Linear(self.num_filters_total, num_classes, bias=False)\n", | ||
" self.Bias = nn.Parameter(torch.ones([num_classes]))\n", | ||
" self.filter_list = nn.ModuleList([nn.Conv2d(1, num_filters, (size, embedding_size)) for size in filter_sizes])\n", | ||
"\n", | ||
" def forward(self, X):\n", | ||
" embedded_chars = self.W(X) # [batch_size, sequence_length, sequence_length]\n", | ||
" embedded_chars = embedded_chars.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]\n", | ||
"\n", | ||
" pooled_outputs = []\n", | ||
" for i, conv in enumerate(self.filter_list):\n", | ||
" # conv : [input_channel(=1), output_channel(=3), (filter_height, filter_width), bias_option]\n", | ||
" h = F.relu(conv(embedded_chars))\n", | ||
" # mp : ((filter_height, filter_width))\n", | ||
" mp = nn.MaxPool2d((sequence_length - filter_sizes[i] + 1, 1))\n", | ||
" # pooled : [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3)]\n", | ||
" pooled = mp(h).permute(0, 3, 2, 1)\n", | ||
" pooled_outputs.append(pooled)\n", | ||
"\n", | ||
" h_pool = torch.cat(pooled_outputs, len(filter_sizes)) # [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3) * 3]\n", | ||
" h_pool_flat = torch.reshape(h_pool, [-1, self.num_filters_total]) # [batch_size(=6), output_height * output_width * (output_channel * 3)]\n", | ||
" model = self.Weight(h_pool_flat) + self.Bias # [batch_size, num_classes]\n", | ||
" return model\n", | ||
"\n", | ||
"if __name__ == '__main__':\n", | ||
" embedding_size = 2 # embedding size\n", | ||
" sequence_length = 3 # sequence length\n", | ||
" num_classes = 2 # number of classes\n", | ||
" filter_sizes = [2, 2, 2] # n-gram windows\n", | ||
" num_filters = 3 # number of filters\n", | ||
"\n", | ||
" # 3 words sentences (=sequence_length is 3)\n", | ||
" sentences = [\"i love you\", \"he loves me\", \"she likes baseball\", \"i hate you\", \"sorry for that\", \"this is awful\"]\n", | ||
" labels = [1, 1, 1, 0, 0, 0] # 1 is good, 0 is not good.\n", | ||
"\n", | ||
" word_list = \" \".join(sentences).split()\n", | ||
" word_list = list(set(word_list))\n", | ||
" word_dict = {w: i for i, w in enumerate(word_list)}\n", | ||
" vocab_size = len(word_dict)\n", | ||
"\n", | ||
" model = TextCNN()\n", | ||
"\n", | ||
" criterion = nn.CrossEntropyLoss()\n", | ||
" optimizer = optim.Adam(model.parameters(), lr=0.001)\n", | ||
"\n", | ||
" inputs = torch.LongTensor([np.asarray([word_dict[n] for n in sen.split()]) for sen in sentences])\n", | ||
" targets = torch.LongTensor([out for out in labels]) # To using Torch Softmax Loss function\n", | ||
"\n", | ||
" # Training\n", | ||
" for epoch in range(5000):\n", | ||
" optimizer.zero_grad()\n", | ||
" output = model(inputs)\n", | ||
"\n", | ||
" # output : [batch_size, num_classes], target_batch : [batch_size] (LongTensor, not one-hot)\n", | ||
" loss = criterion(output, targets)\n", | ||
" if (epoch + 1) % 1000 == 0:\n", | ||
" print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))\n", | ||
"\n", | ||
" loss.backward()\n", | ||
" optimizer.step()\n", | ||
"\n", | ||
" # Test\n", | ||
" test_text = 'sorry hate you'\n", | ||
" tests = [np.asarray([word_dict[n] for n in test_text.split()])]\n", | ||
" test_batch = torch.LongTensor(tests)\n", | ||
"\n", | ||
" # Predict\n", | ||
" predict = model(test_batch).data.max(1, keepdim=True)[1]\n", | ||
" if predict[0][0] == 0:\n", | ||
" print(test_text,\"is Bad Mean...\")\n", | ||
" else:\n", | ||
" print(test_text,\"is Good Mean!!\")" | ||
], | ||
"outputs": [], | ||
"execution_count": null | ||
} | ||
], | ||
"metadata": { | ||
"anaconda-cloud": {}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.