Highlights
- Pro
Stars
Best Practices on Recommendation Systems
PyTorch-Lightning Library for Neural News Recommendation
A collection of neural news recommendation methods built with PyTorch.
Search and Recommender Systems papers with Code
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.
Provides classes around biased random walks on networks.
building a recommendation system using graph search methodologies. We will be comparing these different approaches and closely observe the limitations of each.
Java 8 Recommender Systems framework for novelty, diversity and much more
Code used in the paper "A unified optimization toolbox for solving popularity bias, fairness, and diversity in recommender systems" by Sinan Seymen, Himan Abdollahpouri and Edward C. Malthouse
Controllable Multi-Objective Re-ranking with Policy Hypernetworks (SIGKDD 2023)
通过阅读网上的资料代码,进行自我加工,努力实现常用的机器学习算法。实现算法有KNN、Kmeans、EM、Perceptron、决策树、逻辑回归、svm、adaboost、朴素贝叶斯
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为15个章节,近20万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系[email protected] 版权所有,违权必究 Tan 2018.06
图解计算机网络、操作系统、计算机组成、数据库,共 1000 张图 + 50 万字,破除晦涩难懂的计算机基础知识,让天下没有难懂的八股文!🚀 在线阅读:https://xiaolincoding.com
A full-stack real-time chat application built with React, Node.js, Redis, Postgres, and Socket.io
a collection of simple demos of React.js
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.
Exercise to learn concepts of Mock/Stub.