To accelerate PPR calculations with GPU, it is recommended to install nx-cugraph. The implementation for PMCF is under the following development environment:
- python=3.10.8
- torch=2.1.2+cu118
- torch-sparse=0.6.18
- networkx=3.3
- numpy=1.26.4
- scipy=1.14.0
We utilize three datasets for evaluating PMCF: Yelp, Gowalla, and Amazon. Our evaluation follows the common implicit feedback paradigm. The datasets are divided into training set, validation set and test set by 70:5:25.
Dataset | # Users | # Items | # Interactions | Interaction Density |
---|---|---|---|---|
Yelp | ||||
Gowalla | ||||
Amazon |
Switch the working directory to methods/PMCF/
. The un-specified hyperparameters in the commands are set as default.
- Gowalla
python Main.py --data gowalla --lr 3e-4
- Yelp
python Main.py --data yelp --reg 2e-4 --epoch 150 --gcn_layer 5
- Amazon
python Main.py --data amazon --latdim 72 --head 8 --gcn_layer 3