-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Samitha Nanayakkara
authored and
Samitha Nanayakkara
committed
Jul 29, 2018
0 parents
commit 913ee5d
Showing
13 changed files
with
642 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
import re,scipy | ||
import numpy as np | ||
import os,io,random | ||
from sklearn.feature_extraction.text import TfidfVectorizer | ||
from sklearn.feature_selection import SelectKBest | ||
from sklearn.feature_selection import f_classif | ||
from keras.models import Sequential | ||
from keras.layers import Dense,Dropout | ||
from keras.optimizers import Adam | ||
from keras.callbacks import EarlyStopping,TensorBoard | ||
from keras.models import load_model | ||
from scipy.sparse import hstack,csr_matrix | ||
from scipy import sparse | ||
|
||
|
||
# Global list of categories. | ||
categories = ['Local','International'] # All interested categories should be listed here. | ||
|
||
# Pre-process data. Here only have removed links from sinhala news data. | ||
def pre_process(folderName,functionType): | ||
path_to_Folder_Parent_Folder = os.path.abspath(__file__ + "/../../") | ||
|
||
if(os.path.isfile(path_to_Folder_Parent_Folder+'/'+functionType+'/'+folderName+'/text.txt') and not (os.path.isfile(path_to_Folder_Parent_Folder+'/'+folderName+'/output.txt'))): | ||
inFile = open(path_to_Folder_Parent_Folder+'/'+functionType+'/'+folderName+'/text.txt','r') | ||
outFile = open(path_to_Folder_Parent_Folder+'/'+functionType+'/'+folderName+'/output.txt','w+') | ||
text = inFile.read().splitlines() | ||
for line in text: | ||
outFile.write(re.sub(r'https?:\/\/.*[\r\n]*','',line)+'\n') # Use to remove links from original news articles | ||
outFile.close() | ||
inFile.close() | ||
else: | ||
print('File not found or output file exist') | ||
pass | ||
|
||
# Create corpus of words from pre-processed files | ||
def createCorpus(functionType): | ||
if functionType == 'Training': | ||
path_to_Folder_Parent_Folder = os.path.abspath(__file__ + "/../../") | ||
fullCorpus = [] | ||
labels = [] | ||
for types in categories: | ||
if not os.path.isfile(path_to_Folder_Parent_Folder+'/'+functionType+'/'+types+'/output.txt'): | ||
pre_process(types,functionType) # Create pre_processed output file if it does not exist. | ||
|
||
inFile = open(path_to_Folder_Parent_Folder+'/'+functionType+'/'+types+'/output.txt') | ||
text = inFile.read().splitlines() | ||
i=0 | ||
while i<len(text): | ||
if types=='Local': | ||
labels.append(1) | ||
else: | ||
labels.append(0) | ||
i += 1 | ||
fullCorpus = fullCorpus+ text | ||
|
||
combined = list(zip(fullCorpus, labels)) | ||
random.shuffle(combined) | ||
fullCorpus[:], labels[:] = zip(*combined) | ||
count = 0 | ||
while count < len(labels): | ||
#print(fullCorpus[count]+ ' -!!- '+labels[count]) Use to print corpus and labels | ||
count += 1 | ||
|
||
#print(len(labels)) Size of the corpus of all categories | ||
return fullCorpus,labels | ||
|
||
else: | ||
path_to_Folder_Parent_Folder = os.path.abspath(__file__ + "/../../") | ||
fullCorpus = [] | ||
labels = [] | ||
for types in categories: | ||
if not os.path.isfile(path_to_Folder_Parent_Folder+'/'+types+'/output.txt'): | ||
pre_process(types,functionType) # Create pre_processed output file if it does not exist. | ||
inFile = open(path_to_Folder_Parent_Folder+'/'+functionType+'/'+types+'/output.txt') | ||
text = inFile.read().splitlines() | ||
i=0 | ||
while i<len(text): | ||
if types=='Local': | ||
labels.append(1) | ||
else: | ||
labels.append(0) | ||
i += 1 | ||
fullCorpus = fullCorpus+ text | ||
|
||
combined = list(zip(fullCorpus, labels)) | ||
random.shuffle(combined) | ||
fullCorpus[:], labels[:] = zip(*combined) | ||
count = 0 | ||
while count < len(labels): | ||
#print(fullCorpus[count]+ ' -!!- '+labels[count]) Use to print corpus and labels | ||
count += 1 | ||
|
||
#print(len(labels)) Size of the corpus of all categories | ||
return fullCorpus,labels | ||
|
||
# Create bigram (Since n=2 here) and using TFIDF vectorization method transforme data to vector representation. SelectKBest removes all but the k highest scoring features. | ||
def ngramFunc(training_vals,training_labels,test_values,val_values): # n-gram n value | ||
ngram = (1, 2) | ||
topK = 20000 | ||
token_Mode = 'word' | ||
min_freq = 2 | ||
kwargs = { | ||
'ngram_range': ngram, # Use 1-grams + 2-grams. | ||
'dtype': 'int32', | ||
'strip_accents': 'unicode', | ||
'decode_error': 'replace', | ||
'analyzer': token_Mode, # Split text into word tokens. | ||
'min_df': min_freq, | ||
} | ||
vectorizer = TfidfVectorizer(**kwargs) | ||
training = vectorizer.fit_transform(training_vals) | ||
testing = vectorizer.transform(test_values) | ||
validating = vectorizer.transform(val_values) | ||
|
||
selector = SelectKBest(f_classif, k=min(topK, training.shape[1])) # Use to identify best features and use to train model and test model. | ||
selector.fit(training, training_labels) | ||
train = selector.transform(training).astype('float32') | ||
test = selector.transform(testing).astype('float32') | ||
validation = selector.transform(validating).astype('float32') | ||
|
||
return train,test, validation | ||
|
||
def ngramFuncPrediction(predict_values): | ||
ngram = (1, 2) | ||
trainingFeatureSize = 1196 | ||
token= 'word' | ||
min_freq = 1 | ||
kwargs = { | ||
'ngram_range': ngram, # Use 1-grams + 2-grams. | ||
'dtype': 'int32', | ||
'strip_accents': 'unicode', | ||
'decode_error': 'replace', | ||
'analyzer': token, # Split text into word tokens. | ||
'min_df': min_freq, | ||
'max_features':trainingFeatureSize, | ||
} | ||
vectorizer = TfidfVectorizer(**kwargs) | ||
predict = vectorizer.fit_transform(predict_values).astype('float32') | ||
firstSize = predict.shape[1] | ||
rep = trainingFeatureSize/firstSize-1 | ||
i=0 | ||
print(firstSize) | ||
temp = predict | ||
while i<rep: | ||
predict = hstack([predict,temp]) | ||
i+=1 | ||
calc = abs(predict.shape[1] - trainingFeatureSize) | ||
predict = sparse.lil_matrix(sparse.csr_matrix(predict.tocsr()[:,0:trainingFeatureSize])) | ||
predict[:,firstSize:predict.shape[1]]=pow(10,-100) | ||
|
||
print(predict.shape[1]) | ||
|
||
return predict | ||
|
||
# Final method to start training including all other functions. | ||
def training(): | ||
|
||
training_fullCorpus , training_labels = createCorpus('Training') | ||
test_fullCorpus,test_labels = createCorpus('Testing') | ||
val_fullCorpus,val_labels = createCorpus('Validation') | ||
|
||
train , test, validate = ngramFunc(training_fullCorpus,training_labels,test_fullCorpus,val_fullCorpus) # bag-of-words approach | ||
|
||
inputShape =train.shape[1:] | ||
print('------------- Input Shape ----------------') | ||
print(inputShape) | ||
adam = Adam(lr=0.0005) # Learning rate for this training. | ||
batchSize= 512 # Batch size | ||
tensorboard = TensorBoard(log_dir="./logs",histogram_freq=0,write_graph=True,write_images=True) # Develop the tensorboard graph. Run tensorboard -logdir=./logs from current directory of this python file using terminal(MacOS/Linux) or CMD(Windows). | ||
earlystop = EarlyStopping(monitor='val_loss',patience=5) # To early stop the model before being over fitted. | ||
|
||
# Since this is a categorical classification (Because number of classes > 2) final layer softmax activation and categorical_crossentropy | ||
model = Sequential() | ||
model.add(Dense(64,activation='relu',input_shape=inputShape)) | ||
model.add(Dropout(0.5)) | ||
model.add(Dense(1,activation='sigmoid')) | ||
model.add(Dropout(0.5)) | ||
model.summary() | ||
|
||
if len(categories)>2: | ||
model.compile(loss='categorical_crossentropy',optimizer=adam,metrics=['accuracy']) | ||
else: | ||
model.compile(loss='binary_crossentropy',optimizer=adam,metrics=['accuracy']) | ||
|
||
|
||
model.fit(train,training_labels,batch_size=batchSize,epochs=5000,callbacks=[tensorboard,earlystop],validation_data=(validate,val_labels)) | ||
score, acc = model.evaluate(test,test_labels,batch_size=batchSize) | ||
print('Score: ',score) # Test Score | ||
print('Accuracy: ',acc) # Test Accuracy (With this default configurations, 70.7% of testing accuracy) | ||
print('---------- Training Succesful ----------') | ||
model.save('Sinhala Text Classifier.h5') # Save model as HDF5 format. | ||
|
||
def predict(txtfileName): | ||
currentLocation = os.path.abspath(__file__ + "/../") | ||
if not (os.path.isfile(currentLocation+'/Sinhala Text Classifier.h5')): | ||
print('Model is missing under the name of \"Sinhala Text Classifier.h5\". So training starts before predicting') | ||
training() | ||
|
||
else: | ||
pass | ||
print('Loading model. Please wait ... ') | ||
model = load_model('Sinhala Text Classifier.h5') | ||
if os.path.abspath(__file__ + "/../../")+'/Predict/'+txtfileName+'.txt': | ||
filePath = os.path.abspath(__file__ + "/../../")+'/Predict/'+txtfileName+'.txt' | ||
inFile = open(filePath,'r') | ||
text = inFile.read().splitlines() | ||
predict = ngramFuncPrediction(text) | ||
print('Prediction starts') | ||
out = model.predict(predict) | ||
out = sum(out) / len(out) | ||
finalOut = (out > 0.5).astype(int) | ||
print(out) | ||
if finalOut[0] == 0: | ||
print('International') | ||
else : | ||
print('Local') | ||
else: | ||
print('Prediction data included file not found') | ||
|
||
predict('text') | ||
|
||
|
||
|
||
|
||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
pākistānayē mahā mætivaraṇaya pævætvū badādā (25) miliyana gaṇanak siya chandaya prakāśa kirīmaṭa chanda madhyasthāna veta pæmiṇi atara mætivaraṇa pracaṇḍa kriyā ræsak vārtā viya. kveṭā nagarayē siduvū bōmba pipirīmakin pudgalayan 31 k pamaṇa miya giyaha. | ||
kuvēṭhi samāja mādhya jāla ossē prasiddhiyaṭa patva æti kāntāvak eraṭa sēvaya karana pilipīna gṛha sēvikāvan piḷiban̆da paḷa kaḷa matayakaṭa erehiva dæḍi vivēcana ella vemin tibē. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# Sinhala Text Classification | ||
|
||
Text classification is currently a popular machine learning application and this repository contains details of results and datasets. | ||
|
||
|
||
## Folder Structure | ||
|
||
Master -- | | ||
|-Code | ||
|-Testing | ||
|-Training | ||
|-Validation | ||
Code folder contains Code.py file which shows the implementation of this classification with data pre processing. Also it contains this trained n-grams based model in HDF5 format. | ||
|
||
Testing,Training,Validation Folders contain test,train and validation data respectively in categories. As an example, this Sinhala text classification is a binary classification (Classified based on Local news and International News). So these folders contain Two subfolders to represent those categories and each category contains a text.txt file (UTF-8 Encoded) which contains all news. | ||
|
||
E.g: | ||
|
||
Testing -- | | ||
|-International - text.txt | ||
|-Local - text.txt | ||
## Details | ||
|
||
This model has been trained using n-grams and tfidf vectorization method. It had 76% training accuracy with 70% testing accuracy. Also since it is not possible to train with sinhala fonts, **phonetic representation** used to represent sinhala words. | ||
Under pre-processing, this algorithm only removes URLs from news. | ||
|
||
## Requirements | ||
|
||
Python 3.x | ||
Tensorflow 1.8 | ||
Keras 2.1.x | ||
sklearn | ||
numpy | ||
|
||
## Run | ||
|
||
To run this python code, from inside the Code folder run below code using terminal | ||
|
||
./Code.py | ||
## Re-train | ||
|
||
You have to use another set of news under preferred number of categories and retrain the model. Also have to adjust some parameters in `Code.py`. | ||
|
||
## Prediction | ||
|
||
Here add your prediction text.txt file to `Predict` folder. Please remember to rename the file as text.txt (If you don't want to edit Code.py) and keep it as UTF-8 encoded. | ||
For a test run of prediction, just run `./Code.py` as said in *Run* subsection. | ||
It is a must to have saved HDF5 file under Code folder. If not, program will automatically start to train before predict. | ||
Note that, your prediction may not be very accurate since this model only achieved 70% of accuracy and trained only upto some vocabulary. To get better results, retrain the model with paragraphs of news having your preferred vocabulary. |
Oops, something went wrong.