CTC\Transducer\LAS Default is Chinese ASR
Now the project is still in the development stages
Welcome to use and feedback bugs
Model Name | link | code | train data | txt CER | phoneme CER |
---|---|---|---|---|---|
MultiTask | pan.baidu.com/s/1nDDqcJXBbpFJASYz_U8FfA | ucqf | aishell2(10 epochs) | 10.4 | 8.3 |
New:
-
correct train and test of the RNN-T Structure.
Because of it's decoding way,it should not support batch decode. And more suitable for one2one streaming mode.
-
Remove the wrong way in RNN-T decoding function.
Last:
- Add Mel Layer
support training
- All Structure add mel layer
It's more like end-to-end,now you can feed wav to model
- am_data.yml
use_mel_layer: True mel_layer_type: Melspectrogram #Melspectrogram trainable_kernel: True #support train model
- pre-train model
- Fix bugs
- CTC
- Transducer
- LAS
- MultiTaskCTC
- Conformer
- ESPNet:
Efficient Spatial Pyramid of Dilated Convolutions
- DeepSpeech2
- Transformer
Pinyin to Chinese characters
- O2O-Encoder-Decoder
Complete transformer,and one to one relationship between phoneme and target ,e.g.: pin4 yin4-> 拼音
- O2O-Encoder
Not contain the decoder part,others are same.
- Encoder-Decoder
Typic transformer
- O2O-Encoder-Decoder
- Python 3.6+
- Tensorflow 2.2+:
pip install tensorflow
- librosa
- pypinyin
if you need use the default phoneme
- keras-bert
- addons
For LAS structure,pip install tensorflow-addons
- tqdm
- jieba
- wrap_rnnt_loss
not essential,provide in ./externals
- wrap_ctc_decoders
not essential,provide in ./externals
-
Prepare train_list.
am_train_list format:
file_path1 \t text1 file_path2 \t text2 ……
lm_train_list format:
text1 text2 ……
-
Down the bert model for LM training,if you don't need LM can skip this Step:
https://pan.baidu.com/s/1_HDAhfGZfNhXS-cYoLQucA extraction code: 4hsa
-
Modify the
am_data.yml
(in ./configs),set running params.Modify thename
in model yaml to choose the structure. -
Just run:
python train_am.py --data_config ./configs/am_data.yml --model_config ./configs/conformer.yml
-
To Test,you can follow in
run-test.py
,addition,you can modify thepredict
function to meet your needs:from utils.user_config import UserConfig from AMmodel.model import AM from LMmodel.trm_lm import LM am_config=UserConfig(r'./configs/am_data.yml',r'./configs/conformer.yml') lm_config = UserConfig(r'./configs/lm_data.yml', r'./configs/transformer.yml') am=AM(am_config) am.load_model(training=False) lm=LM(lm_config) lm.load_model() am_result=am.predict(wav_path) lm_result=lm.predict(am_result)
Use Tester to test your model:
Fisrt modify the eval_list
in am_data.yml/lm_data.yml
Then:
python eval_am.py --data_config ./configs/am_data.yml --model_config ./configs/conformer.yml
Tester will show SER/CER/DEL/INS/SUB
You can add your model in ./AMmodel
folder e.g, LM model is the same with follow:
from AMmodel.transducer_wrap import Transducer
from AMmodel.ctc_wrap import CtcModel
from AMmodel.las_wrap import LAS,LASConfig
class YourModel(tf.keras.Model):
def __init__(self,……):
super(YourModel, self).__init__(……)
……
def call(self, inputs, training=False, **kwargs):
……
return decoded_feature
#To CTC
class YourModelCTC(CtcModel):
def __init__(self,
……
**kwargs):
super(YourModelCTC, self).__init__(
encoder=YourModel(……),num_classes=vocabulary_size,name=name,
)
self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1
#To Transducer
class YourModelTransducer(Transducer):
def __init__(self,
……
**kwargs):
super(YourModelTransducer, self).__init__(
encoder=YourModel(……),
vocabulary_size=vocabulary_size,
embed_dim=embed_dim,
embed_dropout=embed_dropout,
num_lstms=num_lstms,
lstm_units=lstm_units,
joint_dim=joint_dim,
name=name, **kwargs
)
self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1
#To LAS
class YourModelLAS(LAS):
def __init__(self,
……,
config,# the config dict in model yml
training,
**kwargs):
config['LAS_decoder'].update({'encoder_dim':encoder_dim})# encoder_dim is your encoder's last dimension
decoder_config=LASConfig(**config['LAS_decoder'])
super(YourModelLAS, self).__init__(
encoder=YourModel(……),
config=decoder_config,
training=training,
)
self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1
Then,import the your model in ./AMmodel/model.py
,modify the load_model
function
AM/LM model are the same as follow:
from AMmodel.model import AM
am_config = UserConfig('...','...')
am=AM(am_config)
am.load_model(False)
am.convert_to_pb(export_path)
IF you want to use your own phoneme,modify the convert function in am_dataloader.py/lm_dataloader.py
def init_text_to_vocab(self):#keep the name
def text_to_vocab_func(txt):
return your_convert_function
self.text_to_vocab = text_to_vocab_func #here self.text_to_vocab is a function,not a call
Don't forget that the token list start with S
and /S
,e.g:
S
/S
de
shì
……
The test data are aishell's test dataset and dev dataset.
Am takes the Pinyin phoneme as the final result and use CER (character error rate) to test.
LM is based on Chinese characters ,and use CER too.
After 10 epochs:
AM:
Test | Dev |
---|---|
4.1% | 3.26% |
LM:
Test | Dev |
---|---|
3.12% | 3.16% |
AM-LM:
Test | Dev |
---|---|
8.42% | 7.36% |
AM Speed Test,use a ~4.1 seconds wav on CPU:
CTC | Transducer | LAS |
---|---|---|
150ms | 350ms | 280ms |
LM Speed Test,12 word on CPU:
O2O-Encoder-Decoder | O2O-Encoder | Encoder-Decoder |
---|---|---|
100ms | 20ms | 300ms |
Thanks for follows:
https://github.com/usimarit/TiramisuASR modify from it
https://github.com/noahchalifour/warp-transducer