forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompassmot.pde
269 lines (224 loc) · 9.9 KB
/
compassmot.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
compass/motor interference calibration
*/
// setup_compassmot - sets compass's motor interference parameters
static uint8_t mavlink_compassmot(mavlink_channel_t chan)
{
int8_t comp_type; // throttle or current based compensation
Vector3f compass_base[COMPASS_MAX_INSTANCES]; // compass vector when throttle is zero
Vector3f motor_impact[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector
Vector3f motor_impact_scaled[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector scaled with throttle
Vector3f motor_compensation[COMPASS_MAX_INSTANCES]; // final compensation to be stored to eeprom
float throttle_pct; // throttle as a percentage 0.0 ~ 1.0
float throttle_pct_max = 0.0f; // maximum throttle reached (as a percentage 0~1.0)
float current_amps_max = 0.0f; // maximum current reached
float interference_pct[COMPASS_MAX_INSTANCES]; // interference as a percentage of total mag field (for reporting purposes only)
uint32_t last_run_time;
uint32_t last_send_time;
bool updated = false; // have we updated the compensation vector at least once
uint8_t command_ack_start = command_ack_counter;
// exit immediately if we are already in compassmot
if (ap.compass_mot) {
// ignore restart messages
return 1;
}else{
ap.compass_mot = true;
}
// check compass is enabled
if (!g.compass_enabled) {
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("compass disabled\n"));
ap.compass_mot = false;
return 1;
}
// check compass health
compass.read();
for (uint8_t i=0; i<compass.get_count(); i++) {
if (!compass.healthy(i)) {
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("check compass"));
ap.compass_mot = false;
return 1;
}
}
// check if radio is calibrated
pre_arm_rc_checks();
if (!ap.pre_arm_rc_check) {
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("RC not calibrated"));
ap.compass_mot = false;
return 1;
}
// check throttle is at zero
read_radio();
if (g.rc_3.control_in != 0) {
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("thr not zero"));
ap.compass_mot = false;
return 1;
}
// check we are landed
if (!ap.land_complete) {
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("Not landed"));
ap.compass_mot = false;
return 1;
}
// disable cpu failsafe
failsafe_disable();
// initialise compass
init_compass();
// default compensation type to use current if possible
if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) {
comp_type = AP_COMPASS_MOT_COMP_CURRENT;
}else{
comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
}
// send back initial ACK
mavlink_msg_command_ack_send(chan, MAV_CMD_PREFLIGHT_CALIBRATION,0);
// flash leds
AP_Notify::flags.esc_calibration = true;
// warn user we are starting calibration
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("STARTING CALIBRATION"));
// inform what type of compensation we are attempting
if (comp_type == AP_COMPASS_MOT_COMP_CURRENT) {
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("CURRENT"));
} else{
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("THROTTLE"));
}
// disable throttle and battery failsafe
g.failsafe_throttle = FS_THR_DISABLED;
g.failsafe_battery_enabled = FS_BATT_DISABLED;
g.failsafe_gps_enabled = FS_GPS_DISABLED;
// disable motor compensation
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
for (uint8_t i=0; i<compass.get_count(); i++) {
compass.set_motor_compensation(i, Vector3f(0,0,0));
}
// get initial compass readings
last_run_time = millis();
while ( millis() - last_run_time < 500 ) {
compass.accumulate();
}
compass.read();
// store initial x,y,z compass values
// initialise interference percentage
for (uint8_t i=0; i<compass.get_count(); i++) {
compass_base[i] = compass.get_field(i);
interference_pct[i] = 0.0f;
}
// enable motors and pass through throttle
init_rc_out();
output_min();
motors.armed(true);
// initialise run time
last_run_time = millis();
last_send_time = millis();
// main run while there is no user input and the compass is healthy
while (command_ack_start == command_ack_counter && compass.healthy(compass.get_primary()) && motors.armed()) {
// 50hz loop
if (millis() - last_run_time < 20) {
// grab some compass values
compass.accumulate();
hal.scheduler->delay(5);
continue;
}
last_run_time = millis();
// read radio input
read_radio();
// pass through throttle to motors
motors.throttle_pass_through(g.rc_3.radio_in);
// read some compass values
compass.read();
// read current
read_battery();
// calculate scaling for throttle
throttle_pct = (float)g.rc_3.control_in / 1000.0f;
throttle_pct = constrain_float(throttle_pct,0.0f,1.0f);
// if throttle is near zero, update base x,y,z values
if (throttle_pct <= 0.0f) {
for (uint8_t i=0; i<compass.get_count(); i++) {
compass_base[i] = compass_base[i] * 0.99f + compass.get_field(i) * 0.01f;
}
// causing printing to happen as soon as throttle is lifted
} else {
// calculate diff from compass base and scale with throttle
for (uint8_t i=0; i<compass.get_count(); i++) {
motor_impact[i] = compass.get_field(i) - compass_base[i];
}
// throttle based compensation
if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
// for each compass
for (uint8_t i=0; i<compass.get_count(); i++) {
// scale by throttle
motor_impact_scaled[i] = motor_impact[i] / throttle_pct;
// adjust the motor compensation to negate the impact
motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
}
updated = true;
} else {
// for each compass
for (uint8_t i=0; i<compass.get_count(); i++) {
// current based compensation if more than 3amps being drawn
motor_impact_scaled[i] = motor_impact[i] / battery.current_amps();
// adjust the motor compensation to negate the impact if drawing over 3amps
if (battery.current_amps() >= 3.0f) {
motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
updated = true;
}
}
}
// calculate interference percentage at full throttle as % of total mag field
if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
for (uint8_t i=0; i<compass.get_count(); i++) {
// interference is impact@fullthrottle / mag field * 100
interference_pct[i] = motor_compensation[i].length() / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f;
}
}else{
for (uint8_t i=0; i<compass.get_count(); i++) {
// interference is impact/amp * (max current seen / max throttle seen) / mag field * 100
interference_pct[i] = motor_compensation[i].length() * (current_amps_max/throttle_pct_max) / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f;
}
}
// record maximum throttle and current
throttle_pct_max = max(throttle_pct_max, throttle_pct);
current_amps_max = max(current_amps_max, battery.current_amps());
}
if (hal.scheduler->millis() - last_send_time > 500) {
last_send_time = hal.scheduler->millis();
mavlink_msg_compassmot_status_send(chan,
g.rc_3.control_in,
battery.current_amps(),
interference_pct[compass.get_primary()],
motor_compensation[compass.get_primary()].x,
motor_compensation[compass.get_primary()].y,
motor_compensation[compass.get_primary()].z);
}
}
// stop motors
motors.output_min();
motors.armed(false);
// set and save motor compensation
if (updated) {
compass.motor_compensation_type(comp_type);
for (uint8_t i=0; i<compass.get_count(); i++) {
compass.set_motor_compensation(i, motor_compensation[i]);
}
compass.save_motor_compensation();
// display success message
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("Calibration Successful!"));
} else {
// compensation vector never updated, report failure
gcs[chan-MAVLINK_COMM_0].send_text_P(SEVERITY_HIGH, PSTR("Failed!"));
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
}
// display new motor offsets and save
report_compass();
// turn off notify leds
AP_Notify::flags.esc_calibration = false;
// re-enable cpu failsafe
failsafe_enable();
// re-enable failsafes
g.failsafe_throttle.load();
g.failsafe_battery_enabled.load();
g.failsafe_gps_enabled.load();
// flag we have completed
ap.compass_mot = false;
return 0;
}