forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
a capsule cnn on cifar-10 (keras-team#9193)
* a capsule cnn on cifar-10 * Update cifar10_cnn_capsule.py * update the style * Update cifar10_cnn_capsule.py * Update cifar10_cnn_capsule.py * Update cifar10_cnn_capsule.py * Update cifar10_cnn_capsule.py * pass pep8 verify * Update cifar10_cnn_capsule.py * Update cifar10_cnn_capsule.py
- Loading branch information
Showing
1 changed file
with
222 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
"""Train a simple CNN-Capsule Network on the CIFAR10 small images dataset. | ||
Without Data Augmentation: | ||
It gets to 75% validation accuracy in 10 epochs, | ||
and 79% after 15 epochs, and overfitting after 20 epochs | ||
With Data Augmentation: | ||
It gets to 75% validation accuracy in 10 epochs, | ||
and 79% after 15 epochs, and 83% after 30 epcohs. | ||
In my test, highest validation accuracy is 83.79% after 50 epcohs. | ||
This is a fast Implement, just 20s/epcoh with a gtx 1070 gpu. | ||
""" | ||
|
||
from __future__ import print_function | ||
from keras import backend as K | ||
from keras.engine.topology import Layer | ||
from keras import activations | ||
from keras import utils | ||
from keras.datasets import cifar10 | ||
from keras.models import Model | ||
from keras.layers import * | ||
from keras.preprocessing.image import ImageDataGenerator | ||
|
||
|
||
# the squashing function. | ||
# we use 0.5 in stead of 1 in hinton's paper. | ||
# if 1, the norm of vector will be zoomed out. | ||
# if 0.5, the norm will be zoomed in while original norm is less than 0.5 | ||
# and be zoomed out while original norm is greater than 0.5. | ||
def squash(x, axis=-1): | ||
s_squared_norm = K.sum(K.square(x), axis, keepdims=True) + K.epsilon() | ||
scale = K.sqrt(s_squared_norm) / (0.5 + s_squared_norm) | ||
return scale * x | ||
|
||
|
||
# define our own softmax function instead of K.softmax | ||
# because K.softmax can not specify axis. | ||
def softmax(x, axis=-1): | ||
ex = K.exp(x - K.max(x, axis=axis, keepdims=True)) | ||
return ex / K.sum(ex, axis=axis, keepdims=True) | ||
|
||
|
||
# define the margin loss like hinge loss | ||
def margin_loss(y_true, y_pred): | ||
lamb, margin = 0.5, 0.1 | ||
return y_true * K.square(K.relu(1 - margin - y_pred)) + lamb * ( | ||
1 - y_true) * K.square(K.relu(y_pred - margin)) | ||
|
||
|
||
class Capsule(Layer): | ||
"""A Capsule Implement with Pure Keras | ||
There are two vesions of Capsule. | ||
One is like dense layer (for the fixed-shape input), | ||
and the other is like timedistributed dense (for various length input). | ||
The input shape of Capsule must be (batch_size, | ||
input_num_capsule, | ||
input_dim_capsule | ||
) | ||
and the output shape is (batch_size, | ||
num_capsule, | ||
dim_capsule | ||
) | ||
Capsule Implement is from https://github.com/bojone/Capsule/ | ||
Capsule Paper: https://arxiv.org/abs/1710.09829 | ||
""" | ||
|
||
def __init__(self, | ||
num_capsule, | ||
dim_capsule, | ||
routings=3, | ||
share_weights=True, | ||
activation='squash', | ||
**kwargs): | ||
super(Capsule, self).__init__(**kwargs) | ||
self.num_capsule = num_capsule | ||
self.dim_capsule = dim_capsule | ||
self.routings = routings | ||
self.share_weights = share_weights | ||
if activation == 'squash': | ||
self.activation = squash | ||
else: | ||
self.activation = activations.get(activation) | ||
|
||
def build(self, input_shape): | ||
input_dim_capsule = input_shape[-1] | ||
if self.share_weights: | ||
self.kernel = self.add_weight( | ||
name='capsule_kernel', | ||
shape=(1, input_dim_capsule, | ||
self.num_capsule * self.dim_capsule), | ||
initializer='glorot_uniform', | ||
trainable=True) | ||
else: | ||
input_num_capsule = input_shape[-2] | ||
self.kernel = self.add_weight( | ||
name='capsule_kernel', | ||
shape=(input_num_capsule, input_dim_capsule, | ||
self.num_capsule * self.dim_capsule), | ||
initializer='glorot_uniform', | ||
trainable=True) | ||
|
||
def call(self, inputs): | ||
"""Following the routing algorithm from Hinton's paper, | ||
but replace b = b + <u,v> with b = <u,v>. | ||
This change can improve the feature representation of Capsule. | ||
However, you can replace | ||
b = K.batch_dot(outputs, hat_inputs, [2, 3]) | ||
with | ||
b += K.batch_dot(outputs, hat_inputs, [2, 3]) | ||
to realize a standard routing. | ||
""" | ||
|
||
if self.share_weights: | ||
hat_inputs = K.conv1d(inputs, self.kernel) | ||
else: | ||
hat_inputs = K.local_conv1d(inputs, self.kernel, [1], [1]) | ||
|
||
batch_size = K.shape(inputs)[0] | ||
input_num_capsule = K.shape(inputs)[1] | ||
hat_inputs = K.reshape(hat_inputs, | ||
(batch_size, input_num_capsule, | ||
self.num_capsule, self.dim_capsule)) | ||
hat_inputs = K.permute_dimensions(hat_inputs, (0, 2, 1, 3)) | ||
|
||
b = K.zeros_like(hat_inputs[:, :, :, 0]) | ||
for i in range(self.routings): | ||
c = softmax(b, 1) | ||
if K.backend() == 'theano': | ||
o = K.sum(o, axis=1) | ||
o = self.activation(K.batch_dot(c, hat_inputs, [2, 2])) | ||
if i < self.routings - 1: | ||
b = K.batch_dot(o, hat_inputs, [2, 3]) | ||
if K.backend() == 'theano': | ||
o = K.sum(o, axis=1) | ||
|
||
return o | ||
|
||
def compute_output_shape(self, input_shape): | ||
return (None, self.num_capsule, self.dim_capsule) | ||
|
||
|
||
batch_size = 128 | ||
num_classes = 10 | ||
epochs = 100 | ||
(x_train, y_train), (x_test, y_test) = cifar10.load_data() | ||
|
||
x_train = x_train.astype('float32') | ||
x_test = x_test.astype('float32') | ||
x_train /= 255 | ||
x_test /= 255 | ||
y_train = utils.to_categorical(y_train, num_classes) | ||
y_test = utils.to_categorical(y_test, num_classes) | ||
|
||
# A common Conv2D model | ||
input_image = Input(shape=(None, None, 3)) | ||
x = Conv2D(64, (3, 3), activation='relu')(input_image) | ||
x = Conv2D(64, (3, 3), activation='relu')(x) | ||
x = AveragePooling2D((2, 2))(x) | ||
x = Conv2D(128, (3, 3), activation='relu')(x) | ||
x = Conv2D(128, (3, 3), activation='relu')(x) | ||
|
||
|
||
"""now we reshape it as (batch_size, input_num_capsule, input_dim_capsule) | ||
then connect a Capsule layer. | ||
the output of final model is the lengths of 10 Capsule, whose dim=16. | ||
the length of Capsule is the proba, | ||
so the probelm becomes a 10 two-classification problems | ||
""" | ||
|
||
x = Reshape((-1, 128))(x) | ||
capsule = Capsule(10, 16, 3, True)(x) | ||
output = Lambda(lambda z: K.sqrt(K.sum(K.square(z), 2)))(capsule) | ||
model = Model(inputs=input_image, outputs=output) | ||
|
||
# we use a margin loss | ||
model.compile(loss=margin_loss, optimizer='adam', metrics=['accuracy']) | ||
model.summary() | ||
|
||
# we can compare the performance with or without data augmentation | ||
data_augmentation = True | ||
|
||
if not data_augmentation: | ||
print('Not using data augmentation.') | ||
model.fit( | ||
x_train, | ||
y_train, | ||
batch_size=batch_size, | ||
epochs=epochs, | ||
validation_data=(x_test, y_test), | ||
shuffle=True) | ||
else: | ||
print('Using real-time data augmentation.') | ||
# This will do preprocessing and realtime data augmentation: | ||
datagen = ImageDataGenerator( | ||
featurewise_center=False, # set input mean to 0 over the dataset | ||
samplewise_center=False, # set each sample mean to 0 | ||
featurewise_std_normalization=False, # divide inputs by dataset std | ||
samplewise_std_normalization=False, # divide each input by its std | ||
zca_whitening=False, # apply ZCA whitening | ||
rotation_range=0, # randomly rotate images in 0 to 180 degrees | ||
width_shift_range=0.1, # randomly shift images horizontally | ||
height_shift_range=0.1, # randomly shift images vertically | ||
horizontal_flip=True, # randomly flip images | ||
vertical_flip=False) # randomly flip images | ||
|
||
# Compute quantities required for feature-wise normalization | ||
# (std, mean, and principal components if ZCA whitening is applied). | ||
datagen.fit(x_train) | ||
|
||
# Fit the model on the batches generated by datagen.flow(). | ||
model.fit_generator( | ||
datagen.flow(x_train, y_train, batch_size=batch_size), | ||
epochs=epochs, | ||
validation_data=(x_test, y_test), | ||
workers=4) |