forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Faster-RCNN object detection models from TensorFlow
- Loading branch information
Showing
8 changed files
with
457 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
#include "../precomp.hpp" | ||
#include "layers_common.hpp" | ||
|
||
namespace cv { namespace dnn { | ||
|
||
class CropAndResizeLayerImpl CV_FINAL : public CropAndResizeLayer | ||
{ | ||
public: | ||
CropAndResizeLayerImpl(const LayerParams& params) | ||
{ | ||
CV_Assert(params.has("width"), params.has("height")); | ||
outWidth = params.get<float>("width"); | ||
outHeight = params.get<float>("height"); | ||
} | ||
|
||
bool getMemoryShapes(const std::vector<MatShape> &inputs, | ||
const int requiredOutputs, | ||
std::vector<MatShape> &outputs, | ||
std::vector<MatShape> &internals) const CV_OVERRIDE | ||
{ | ||
CV_Assert(inputs.size() == 2, inputs[0].size() == 4); | ||
if (inputs[0][0] != 1) | ||
CV_Error(Error::StsNotImplemented, ""); | ||
outputs.resize(1, MatShape(4)); | ||
outputs[0][0] = inputs[1][2]; // Number of bounding boxes. | ||
outputs[0][1] = inputs[0][1]; // Number of channels. | ||
outputs[0][2] = outHeight; | ||
outputs[0][3] = outWidth; | ||
return false; | ||
} | ||
|
||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE | ||
{ | ||
CV_TRACE_FUNCTION(); | ||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); | ||
|
||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); | ||
} | ||
|
||
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE | ||
{ | ||
CV_TRACE_FUNCTION(); | ||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); | ||
|
||
Mat& inp = *inputs[0]; | ||
Mat& out = outputs[0]; | ||
Mat boxes = inputs[1]->reshape(1, inputs[1]->total() / 7); | ||
const int numChannels = inp.size[1]; | ||
const int inpHeight = inp.size[2]; | ||
const int inpWidth = inp.size[3]; | ||
const int inpSpatialSize = inpHeight * inpWidth; | ||
const int outSpatialSize = outHeight * outWidth; | ||
CV_Assert(inp.isContinuous(), out.isContinuous()); | ||
|
||
for (int b = 0; b < boxes.rows; ++b) | ||
{ | ||
float* outDataBox = out.ptr<float>(b); | ||
float left = boxes.at<float>(b, 3); | ||
float top = boxes.at<float>(b, 4); | ||
float right = boxes.at<float>(b, 5); | ||
float bottom = boxes.at<float>(b, 6); | ||
float boxWidth = right - left; | ||
float boxHeight = bottom - top; | ||
|
||
float heightScale = boxHeight * static_cast<float>(inpHeight - 1) / (outHeight - 1); | ||
float widthScale = boxWidth * static_cast<float>(inpWidth - 1) / (outWidth - 1); | ||
for (int y = 0; y < outHeight; ++y) | ||
{ | ||
float input_y = top * (inpHeight - 1) + y * heightScale; | ||
int y0 = static_cast<int>(input_y); | ||
const float* inpData_row0 = (float*)inp.data + y0 * inpWidth; | ||
const float* inpData_row1 = (y0 + 1 < inpHeight) ? (inpData_row0 + inpWidth) : inpData_row0; | ||
for (int x = 0; x < outWidth; ++x) | ||
{ | ||
float input_x = left * (inpWidth - 1) + x * widthScale; | ||
int x0 = static_cast<int>(input_x); | ||
int x1 = std::min(x0 + 1, inpWidth - 1); | ||
|
||
float* outData = outDataBox + y * outWidth + x; | ||
const float* inpData_row0_c = inpData_row0; | ||
const float* inpData_row1_c = inpData_row1; | ||
for (int c = 0; c < numChannels; ++c) | ||
{ | ||
*outData = inpData_row0_c[x0] + | ||
(input_y - y0) * (inpData_row1_c[x0] - inpData_row0_c[x0]) + | ||
(input_x - x0) * (inpData_row0_c[x1] - inpData_row0_c[x0] + | ||
(input_y - y0) * (inpData_row1_c[x1] - inpData_row0_c[x1] - inpData_row1_c[x0] + inpData_row0_c[x0])); | ||
|
||
inpData_row0_c += inpSpatialSize; | ||
inpData_row1_c += inpSpatialSize; | ||
outData += outSpatialSize; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
private: | ||
int outWidth, outHeight; | ||
}; | ||
|
||
Ptr<Layer> CropAndResizeLayer::create(const LayerParams& params) | ||
{ | ||
return Ptr<CropAndResizeLayer>(new CropAndResizeLayerImpl(params)); | ||
} | ||
|
||
} // namespace dnn | ||
} // namespace cv |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.