The official implementation of ViraLM: Empowering Virus Discovery through the Genome Foundation Model
🎉 ViraLM is accepted by Bioinformatics!
Viral Language Model (ViraLM) is a Python library for virus identification from metagenomic data. ViraLM employs the latest genome foundation model to capture complex genomic characteristics and is able to distinguish viral genomes from organisms.
Note: we suggest you install all the packages using mamba or conda.
# clone the repository to the local
git clone https://github.com/ChengPENG-wolf/ViraLM.git
cd ViraLM
# install and activate environment for ViraLM
conda env create -f viralm.yaml -n viralm
conda activate viralm
# download and setup the model
gdown --id 1EQVPmFbpLGrBLU0xCtZBpwvXrtrRxic1
tar -xzvf model.tar.gz -C .
rm model.tar.gz
Note: we suggest you run ViraLM on GPU.
Run ViraLM in one command:
python viralm.py [-i INPUT_FA] [-o OUTPUT_PTH] [-d DATABASE_PATH] [-l MINIMUM_LEN] [-t THRESHOLD]
Options
Note: we recommend that MINIMUM_LEN
be larger than 500 for reliable performance.
--input INPUT, -i INPUT
name of the input file (fasta format)
--output OUTPUT, -o OUTPUT
output directory
--database DATABASE, -d DATABASE
model directory
--threads THREADS number of threads if run on cpu
--batch_size BATCH_SIZE
batch size for prediction
--len LEN predict only for sequences >= len bp (default: 500)
--threshold THRESHOLD
threshold for prediction (default: 0.5)
-f, --force force overwrite of the output directory if it exists
-n FILENAME, --filename FILENAME
custom name for output
Example
Prediction on the example file:
export CUDA_VISIBLE_DEVICES=0,1,2,...,n # (option) n is the number of GPUs
python viralm.py --input test.fasta --out result --len 500 --threshold 0.5
If you prefer storing your models/databases in a different location, then you can use
-d
or --db
parameter:
python viralm.py --input test.fasta --out result -d /path/database/downloaded --len 500 --threshold 0.5
seq_name prediction virus_score
-------------------------------------------------- ---------- -----------------
IMGVR_UViG_2531839437_000001|2531839437|2531897698 virus 0.845030747354031
IMGVR_UViG_2529292823_000001|2529292823|2529351314 virus 0.844078302383422
IMGVR_UViG_2531839021_000001|2531839021|2531843197 virus 0.501383100927341
…
This tabular file lists all the inputs and ViraLM's prediction on each input:
seq_name
: The identifier of the sequence in the input FASTA file.prediction
: The final prediction of the input sequence, virus or non-virus.virus_score
: A value in [0, 1.0], indicates the likelihood of the input sequence being a viral sequence. The larger the more likely to be a virus.
This FASTA file contains all the identified virus sequences that have virus_scores larger than THRESHOLD
.
If you use ViraLM in your research, please kindly cite our paper:
@article{peng2024viralm,
title={ViraLM: Empowering Virus Discovery through the Genome Foundation Model},
author={Peng, Cheng and Shang, Jiayu and Guan, Jiaojiao and Wang, Donglin and Sun, Yanni},
journal={Bioinformatics},
pages={btae704},
year={2024},
publisher={Oxford University Press}
}
If you have any questions, please email us: [email protected]