forked from MorvanZhou/Tensorflow-Tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
504f4b4
commit 084648c
Showing
4 changed files
with
186 additions
and
1 deletion.
There are no files selected for viewing
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
""" | ||
Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/ | ||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou | ||
Dependencies: | ||
tensorflow: 1.1.0 | ||
matplotlib | ||
numpy | ||
""" | ||
import tensorflow as tf | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
tf.set_random_seed(1) | ||
np.random.seed(1) | ||
|
||
# Hyper Parameters | ||
BATCH_SIZE = 64 | ||
LR_G = 0.0001 # learning rate for generator | ||
LR_D = 0.0001 # learning rate for discriminator | ||
N_IDEAS = 5 # think of this as number of ideas for generating an art work (Generator) | ||
ART_COMPONENTS = 15 # it could be total point G can draw in the canvas | ||
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)]) | ||
|
||
# show our beautiful painting range | ||
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound') | ||
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound') | ||
plt.legend(loc='upper right') | ||
plt.show() | ||
|
||
|
||
def artist_works(): # painting from the famous artist (real target) | ||
a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis] | ||
paintings = a * np.power(PAINT_POINTS, 2) + (a-1) | ||
labels = (a - 1) > 0.5 # upper paintings (1), lower paintings (0), two classes | ||
labels = labels.astype(np.float32) | ||
return paintings, labels | ||
|
||
art_labels = tf.placeholder(tf.float32, [None, 1]) | ||
with tf.variable_scope('Generator'): | ||
G_in = tf.placeholder(tf.float32, [None, N_IDEAS]) # random ideas (could from normal distribution) | ||
G_art = tf.concat((G_in, art_labels), 1) # combine ideas with labels | ||
G_l1 = tf.layers.dense(G_art, 128, tf.nn.relu) | ||
G_out = tf.layers.dense(G_l1, ART_COMPONENTS) # making a painting from these random ideas | ||
|
||
with tf.variable_scope('Discriminator'): | ||
real_in = tf.placeholder(tf.float32, [None, ART_COMPONENTS], name='real_in') # receive art work from the famous artist + label | ||
real_art = tf.concat((real_in, art_labels), 1) # art with labels | ||
D_l0 = tf.layers.dense(real_art, 128, tf.nn.relu, name='l') | ||
prob_artist0 = tf.layers.dense(D_l0, 1, tf.nn.sigmoid, name='out') # probability that the art work is made by artist | ||
# reuse layers for generator | ||
G_art = tf.concat((G_out, art_labels), 1) # art with labels | ||
D_l1 = tf.layers.dense(G_art, 128, tf.nn.relu, name='l', reuse=True) # receive art work from a newbie like G | ||
prob_artist1 = tf.layers.dense(D_l1, 1, tf.nn.sigmoid, name='out', reuse=True) # probability that the art work is made by artist | ||
|
||
D_loss = -tf.reduce_mean(tf.log(prob_artist0) + tf.log(1-prob_artist1)) | ||
G_loss = tf.reduce_mean(tf.log(1-prob_artist1)) | ||
|
||
train_D = tf.train.AdamOptimizer(LR_D).minimize( | ||
D_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Discriminator')) | ||
train_G = tf.train.AdamOptimizer(LR_G).minimize( | ||
G_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Generator')) | ||
|
||
sess = tf.Session() | ||
sess.run(tf.global_variables_initializer()) | ||
|
||
plt.ion() # something about continuous plotting | ||
plt.show() | ||
for step in range(7000): | ||
artist_paintings, labels = artist_works() # real painting from artist | ||
G_ideas = np.random.randn(BATCH_SIZE, N_IDEAS) | ||
G_paintings, pa0, Dl = sess.run([G_out, prob_artist0, D_loss, train_D, train_G], # train and get results | ||
{G_in: G_ideas, real_in: artist_paintings, art_labels: labels})[:3] | ||
|
||
if step % 50 == 0: # plotting | ||
plt.cla() | ||
plt.plot(PAINT_POINTS[0], G_paintings[0], c='#4AD631', lw=3, label='Generated painting',) | ||
bound = [0, 0.5] if labels[0, 0] == 0 else [0.5, 1] | ||
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + bound[1], c='#74BCFF', lw=3, label='upper bound') | ||
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + bound[0], c='#FF9359', lw=3, label='lower bound') | ||
plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % pa0.mean(), fontdict={'size': 15}) | ||
plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -Dl, fontdict={'size': 15}) | ||
plt.text(-.5, 1.7, 'Class = %i' % int(labels[0, 0]), fontdict={'size': 15}) | ||
plt.ylim((0, 3)) | ||
plt.legend(loc='upper right', fontsize=12) | ||
plt.draw() | ||
plt.pause(0.1) | ||
|
||
plt.ioff() | ||
|
||
# plot a generated painting for upper class | ||
plt.figure(2) | ||
z = np.random.randn(1, N_IDEAS) | ||
label = np.array([[1.]]) # for upper class | ||
G_paintings = sess.run(G_out, {G_in: z, art_labels: label}) | ||
plt.plot(PAINT_POINTS[0], G_paintings[0], c='#4AD631', lw=3, label='G painting for upper class',) | ||
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + bound[1], c='#74BCFF', lw=3, label='upper bound (class 1)') | ||
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + bound[0], c='#FF9359', lw=3, label='lower bound (class 1)') | ||
plt.ylim((0, 3)) | ||
plt.legend(loc='upper right', fontsize=12) | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
""" | ||
Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/ | ||
My Youtube Channel: https://www.youtube.com/user/MorvanZhou | ||
Dependencies: | ||
tensorflow: 1.1.0 | ||
matplotlib | ||
numpy | ||
""" | ||
import tensorflow as tf | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
tf.set_random_seed(1) | ||
np.random.seed(1) | ||
|
||
# Hyper parameters | ||
N_SAMPLES = 20 | ||
N_HIDDEN = 300 | ||
LR = 0.01 | ||
|
||
# training data | ||
x = np.linspace(-1, 1, N_SAMPLES)[:, np.newaxis] | ||
y = x + 0.3*np.random.randn(N_SAMPLES)[:, np.newaxis] | ||
|
||
# test data | ||
test_x = x.copy() | ||
test_y = test_x + 0.3*np.random.randn(N_SAMPLES)[:, np.newaxis] | ||
|
||
# show data | ||
plt.scatter(x, y, c='magenta', s=50, alpha=0.5, label='train') | ||
plt.scatter(test_x, test_y, c='cyan', s=50, alpha=0.5, label='test') | ||
plt.legend(loc='upper left') | ||
plt.ylim((-2.5, 2.5)) | ||
plt.show() | ||
|
||
# tf placeholders | ||
tf_x = tf.placeholder(tf.float32, [None, 1]) | ||
tf_y = tf.placeholder(tf.float32, [None, 1]) | ||
tf_is_training = tf.placeholder(tf.bool, None) # to control dropout when training and testing | ||
|
||
# overfitting net | ||
o1 = tf.layers.dense(tf_x, N_HIDDEN, tf.nn.relu) | ||
o2 = tf.layers.dense(o1, N_HIDDEN, tf.nn.relu) | ||
o_out = tf.layers.dense(o2, 1) | ||
o_loss = tf.losses.mean_squared_error(tf_y, o_out) | ||
o_train = tf.train.AdamOptimizer(LR).minimize(o_loss) | ||
|
||
# dropout net | ||
d1 = tf.layers.dense(tf_x, N_HIDDEN, tf.nn.relu) | ||
d1 = tf.layers.dropout(d1, rate=0.5, training=tf_is_training) # drop out 50% of inputs | ||
d2 = tf.layers.dense(d1, N_HIDDEN, tf.nn.relu) | ||
d2 = tf.layers.dropout(d2, rate=0.5, training=tf_is_training) # drop out 50% of inputs | ||
d_out = tf.layers.dense(d2, 1) | ||
d_loss = tf.losses.mean_squared_error(tf_y, d_out) | ||
d_train = tf.train.AdamOptimizer(LR).minimize(d_loss) | ||
|
||
sess = tf.Session() | ||
sess.run(tf.global_variables_initializer()) | ||
|
||
plt.ion() # something about plotting | ||
plt.show() | ||
|
||
for t in range(500): | ||
sess.run([o_train, d_train], {tf_x: x, tf_y: y, tf_is_training: True}) # train, set is_training=True | ||
|
||
if t % 10 == 0: | ||
# plotting | ||
plt.cla() | ||
o_loss_, d_loss_, o_out_, d_out_ = sess.run( | ||
[o_loss, d_loss, o_out, d_out], {tf_x: test_x, tf_y: test_y, tf_is_training: False} # test, set is_training=False | ||
) | ||
plt.scatter(x, y, c='magenta', s=50, alpha=0.3, label='train') | ||
plt.scatter(test_x, test_y, c='cyan', s=50, alpha=0.3, label='test') | ||
plt.plot(test_x, o_out_, 'r-', lw=3, label='overfitting') | ||
plt.plot(test_x, d_out_, 'b--', lw=3, label='dropout(50%)') | ||
plt.text(0, -1.2, 'overfitting loss=%.4f' % o_loss_, fontdict={'size': 20, 'color': 'red'}) | ||
plt.text(0, -1.5, 'dropout loss=%.4f' % d_loss_, fontdict={'size': 20, 'color': 'blue'}) | ||
plt.legend(loc='upper left') | ||
plt.ylim((-2.5, 2.5)) | ||
plt.pause(0.1) | ||
|
||
plt.ioff() | ||
plt.show() |