Skip to content

Commit

Permalink
add dnn
Browse files Browse the repository at this point in the history
  • Loading branch information
527515025 committed Jan 12, 2019
1 parent afb26b3 commit af4ca5c
Show file tree
Hide file tree
Showing 2 changed files with 106 additions and 0 deletions.
31 changes: 31 additions & 0 deletions DNN/keras_dnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#由于不能链接到官方的已经处理好的数据,所以这里通过tensorflow导入mnist数据
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#from _future_ import print_function
import numpy as np
#from keras.dataseets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import np_utils

batch_size = 128 #梯度下降一个批(batch)的数据量
nb_classes =10 #类别
nb_epoch =10 #梯度下降epoch循环训练次数,每次循环包含全部的样本
image_size = 28*28 #输入图片的大小,由于是灰度图片,因此只有一个颜色通道

#加载数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x_train,y_train= mnist.train.images, mnist.train.labels
#print(x_train.shape,y_train.shape) #(55000, 784) (55000, 10)
x_test,y_test= mnist.test.images, mnist.test.labels
#print(x_test.shape,y_test.shape) #(10000, 784) (10000, 10)
#如果y_train\y_test不是one_hot编码,需要进行转换

#创建模型,逻辑分类相当于一层全链接的神经网络(Dense是Keras中定义的DNN模型)
model = Sequential([Dense(128,input_shape=(image_size,),activation= 'relu'),Dense(10,input_shape=(128,),activation= 'softmax')])
#配置优化器,损失函数
model.compile(optimizer = 'rmsprop',loss = 'categorical_crossentropy',metrics= ['accuracy'])
model.fit(x_train,y_train,batch_size = batch_size,nb_epoch = nb_epoch,verbose = 1,validation_data = (x_test,y_test))
#score分数包含两部分,一部分是val_loss,一部分是val_acc。取score[1]来进行模型的得分评价
score = model.evaluate(x_test,y_test,verbose = 0)
print('Accuracy:{}'.format(score[1]))
75 changes: 75 additions & 0 deletions DNN/tensorflow_DNN.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
#coding:utf-8

#下载mnist数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

import tensorflow as tf

#定义一些参数
learning_rate = 0.001
train_epochs = 20
batch_size = 64

#定义3层感知机的神经单元个数
n_input = 784
n_hidden1 = 100
n_hidden2 = 100
n_classes = 10

#定义网络输入参数占位符
x = tf.placeholder(tf.float32, shape=[None, n_input])
y = tf.placeholder(tf.float32, shape=[None, n_classes])

#定义权重与偏置
weights = {'h1': tf.Variable(tf.random_normal([n_input, n_hidden1])),
'h2': tf.Variable(tf.random_normal([n_hidden1, n_hidden2])),
'out': tf.Variable(tf.random_normal([n_hidden2, n_classes]))}

biases = {'b1': tf.Variable(tf.random_normal([n_hidden1])),
'b2': tf.Variable(tf.random_normal([n_hidden2])),
'out': tf.Variable(tf.random_normal([n_classes]))}


#定义推断过程
def inference(input_x):
layer_1 = tf.nn.relu(tf.matmul(x, weights['h1']) + biases['b1'])
layer_2 = tf.nn.relu(tf.matmul(layer_1, weights['h2']) + biases['b2'])
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer

#构建网络
logits = inference(x)
prediction = tf.nn.softmax(logits)

#定义损失函数与优化器
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss)

#定义评价指标(准确度)
pre_correct = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))
accuracy = tf.reduce_mean(tf.cast(pre_correct, tf.float32))

#初始化所有变量
init = tf.global_variables_initializer()

#开始训练
with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)

for epoch in range(train_epochs):
for batch in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(train_op, feed_dict={x:batch_x, y:batch_y})

if epoch % 10 == 0:
loss_, acc = sess.run([loss, accuracy], feed_dict={x:batch_x, y:batch_y})
print("epoch {}, loss {:.4f}, acc {:.3f}".format(epoch, loss_, acc))

print("optimizer finished!")

#计算测试集的准确度
test_acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})
print('test accuracy', test_acc)

0 comments on commit af4ca5c

Please sign in to comment.