持续更新以下内容,Star to keep updated~
- Prompt和LLM相关论文按细分方向梳理
- AIGC相关应用
- Prompt指南和教程
- ChatGPT及AGI相关解读
- 开源大模型
- ChatGPT相关商业应用 [WIP]
- 解密Prompt系列1. Tunning-Free Prompt:GPT2 & GPT3 & LAMA & AutoPrompt
- 解密Prompt系列2. 冻结Prompt微调LM: T5 & PET & LM-BFF
- 解密Prompt系列3. 冻结LM微调Prompt: Prefix-tuning & Prompt-tuning & P-tuning
- https://github.com/dongguanting/In-Context-Learning_PaperList
- https://github.com/thunlp/PromptPapers
- https://github.com/Timothyxxx/Chain-of-ThoughtsPapers
- OpenAI ChatGPT Intro
- OpenAI InstructGPT intro
- AllenAI ChatGPT能力解读:How does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Sources ⭐
- Huggingface ChatGPT能力解读:The techniques behind ChatGPT: RLHF, IFT, CoT, Red teaming, and more
- Stephen Wolfram ChatGPT能力解读: What Is ChatGPT Doing and Why Does It Work?
- Chatgpt相关解读汇总
- 麻省理工科技采访OpenAI工程师
- AGI历史与现状
- ClickPrompt: 为各种prompt加持的工具生成指令包括Difussion,chatgpt
- Prompt-Engineer-Guide: 如何写prompt的系列教学指南 ⭐
- ChatGPT ShortCut:提供各式场景下的Prompt范例,支持搜索
- PromptPerfect:用魔法打败魔法,输入关键词,模型创建条理清晰的最美提示词
- openAI: ChatGPT出API啦, 价格下降10倍!
- OpenAI Cookbook: 提供OpenAI模型使用示例 ⭐
- AI Topiah: 聆心智能AI角色聊天,和路飞唠了两句,多少有点中二之魂在燃烧
- chatbase: 情感角色聊天,还没尝试
- Vana: virtual DNA, 通过聊天创建虚拟自己!概念很炫
- New Bing:需要连外网否则会重定向到bing中国,需要申请waitlist
- WriteSonic:AI写作,支持对话和定向创作如广告文案,商品描述, 支持Web检索是亮点,支持中文
- copy.ai: WriteSonic竞品,亮点是像论文引用一样每句话都有对应网站链接,可以一键复制到右边的创作Markdown,超级好用!
:star1:
- NotionAI:智能Markdown,适用真相!在创作中用command调用AI辅助润色,扩写,检索内容,给创意idea
- Jasper: 同上,全是竞品哈哈
- ChatExcel: 指令控制excel计算,对熟悉excel的有些鸡肋,对不熟悉的有点用
- ChatPaper: 根据输入关键词,自动在arxiv上下载最新的论文,并对论文进行摘要总结,可以在huggingface上试用!
- copy.down: 中文的营销文案生成,只能定向创作,支持关键词到文案的生成
- Copilot: 要付费哟
- Fauxpilot: copilot本地开源替代
- CodeGex: 国内替代品,还没试过
- dreamstudio.ai: 开创者,Stable Difussion, 有试用quota
- midjourney: 开创者,艺术风格为主
- Dall.E: 三巨头这就凑齐了
- ControlNet: 为绘画创作加持可控性
- GFPGAN: 照片修复
- OPT-IML: Meta复刻GPT3,up to 175B, 不过效果并不及GPT3
- Bloom:BigScience出品,规模最大176B, 感觉应该对标text-davinci-002
- T0: BigScience出品,3B~11B的在T5进行指令微调的模型
- LLaMA:Meta开源指令微调LLM,规模70 亿到 650 亿不等
- ChatLLaMA: 基于RLHF微调了LLaMA
- MetaLM: 微软开源的大规模自监督预训练模型
- Alpaca: 斯坦福开源的使用52k数据在7B的LLaMA上微调得到,据说效果类似text-davinci-003, 模型不久后会发布
- 国内开源模型魔塔社区:https://www.modelscope.cn/home
- PromptCLUE: 多任务Prompt语言模型
- Chatyuan:基于PromptCLUE训练的对话模型
- PLUG: 阿里达摩院发布的大模型,提交申请会给下载链接
- CPM2.0: 智源发布CPM2.0
- Moss: 复旦发布的大模型
- GLM: 清华发布的中英双语130B大模型
- Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing ⭐
- Paradigm Shift in Natural Language Processing
- Pre-Trained Models: Past, Present and Future
- How does in-context learning work? A framework for understanding the differences from traditional supervised learning
- Why can GPT learn in-context? Language Model Secretly Perform Gradient Descent as Meta-Optimizers
- Emerging Ability of Large Language Models
- Rethinking the Role of Demonstrations What Makes incontext learning work?
- Can Explanations Be Useful for Calibrating Black Box Models
- GPT2: Language Models are Unsupervised Multitask Learners
- GPT3: Language Models are Few-Shot Learners ⭐
- LAMA: Language Models as Knowledge Bases?
- AutoPrompt: Eliciting Knowledge from Language Models
- T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
- PET-TC(a): Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference ⭐
- PET-TC(b): PETSGLUE It’s Not Just Size That Matters Small Language Models are also few-shot learners
- GenPET: Few-Shot Text Generation with Natural Language Instructions
- LM-BFF: Making Pre-trained Language Models Better Few-shot Learners ⭐
- ADEPT: Improving and Simplifying Pattern Exploiting Training
- Prefix-tuning: Optimizing continuous prompts for generation
- Prompt-tunning: The power of scale for parameter-efficient prompt tuning ⭐
- P-tunning: GPT Understands Too ⭐
- WARP: Word-level Adversarial ReProgramming
- P-tunning v2: Prompt Tuning Can Be Comparable to Fine-tunning Universally Across Scales and Tasks
- PTR: Prompt Tuning with Rules for Text Classification
- PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains
- Flan: FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS ⭐
- Flan-T5: Scaling Instruction-Finetuned Language Models
- Instruct-GPT: Training language models to follow instructions with human feedback star:
- T0: MULTITASK PROMPTED TRAINING ENABLES ZERO-SHOT TASK GENERALIZATION
- k-INSTRUCT: SUPER-NATURALINSTRUCTIONS: Generalization via Declarative Instructions on 1600+ NLP Tasks
- LaMDA: Language Models for Dialog Applications
- Sparrow: Improving alignment of dialogue agents via targeted human judgements star:
- BlenderBot 3: a deployed conversational agent that continually learns to responsibly engage
- How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation
- Chain of Thought Prompting Elicits Reasoning in Large Language Models ⭐
- COMPLEXITY-BASED PROMPTING FOR MULTI-STEP REASONING
- SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS
- Large Language Models are Zero-Shot Reasoners
- PaLM: Scaling Language Modeling with Pathways
- Deep reinforcement learning from human preferences
- PPO: Proximal Policy Optimization Algorithms ⭐
- InstrutGPT序作:learning to summarize from human feedback
- InstructGPT: Training language models to follow instructions with human feedback ⭐
- RL4LM:IS REINFORCEMENT LEARNING (NOT) FOR NATURAL LANGUAGE PROCESSING BENCHMARKS