Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kruskal Algorithm, removal of Java #561

Merged
merged 5 commits into from
Oct 31, 2022
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Removal of Java from Kruskal
  • Loading branch information
jhuynh06 authored Oct 30, 2022
commit dd3709e316392cd03ef386e963f64492bb240974
129 changes: 1 addition & 128 deletions Algorithms/Greedy Algorithm/Krushkal's Algorithm/readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@ return A
## Implementations
* [C++](#cpp)
* [C](#c)
* [Java](#java)
* [Python](#python)

### CPP
Expand Down Expand Up @@ -290,132 +289,6 @@ int main() {
}
```

### Java
```java
// Kruskal's algorithm in Java

import java.util.*;

class Graph {
class Edge implements Comparable<Edge> {
int src, dest, weight;

public int compareTo(Edge compareEdge) {
return this.weight - compareEdge.weight;
}
};

// Union
class subset {
int parent, rank;
};

int vertices, edges;
Edge edge[];

// Graph creation
Graph(int v, int e) {
vertices = v;
edges = e;
edge = new Edge[edges];
for (int i = 0; i < e; ++i)
edge[i] = new Edge();
}

int find(subset subsets[], int i) {
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}

void Union(subset subsets[], int x, int y) {
int xroot = find(subsets, x);
int yroot = find(subsets, y);

if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}

// Applying Krushkal Algorithm
void KruskalAlgo() {
Edge result[] = new Edge[vertices];
int e = 0;
int i = 0;
for (i = 0; i < vertices; ++i)
result[i] = new Edge();

// Sorting the edges
Arrays.sort(edge);
subset subsets[] = new subset[vertices];
for (i = 0; i < vertices; ++i)
subsets[i] = new subset();

for (int v = 0; v < vertices; ++v) {
subsets[v].parent = v;
subsets[v].rank = 0;
}
i = 0;
while (e < vertices - 1) {
Edge next_edge = new Edge();
next_edge = edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
}
for (i = 0; i < e; ++i)
System.out.println(result[i].src + " - " + result[i].dest + ": " + result[i].weight);
}

public static void main(String[] args) {
int vertices = 6; // Number of vertices
int edges = 8; // Number of edges
Graph G = new Graph(vertices, edges);

G.edge[0].src = 0;
G.edge[0].dest = 1;
G.edge[0].weight = 4;

G.edge[1].src = 0;
G.edge[1].dest = 2;
G.edge[1].weight = 4;

G.edge[2].src = 1;
G.edge[2].dest = 2;
G.edge[2].weight = 2;

G.edge[3].src = 2;
G.edge[3].dest = 3;
G.edge[3].weight = 3;

G.edge[4].src = 2;
G.edge[4].dest = 5;
G.edge[4].weight = 2;

G.edge[5].src = 2;
G.edge[5].dest = 4;
G.edge[5].weight = 4;

G.edge[6].src = 3;
G.edge[6].dest = 4;
G.edge[6].weight = 3;

G.edge[7].src = 5;
G.edge[7].dest = 4;
G.edge[7].weight = 3;
G.KruskalAlgo();
}
}
```

### python
```python
# Kruskal's algorithm in Python
Expand Down Expand Up @@ -487,4 +360,4 @@ g.add_edge(4, 3, 3)
g.add_edge(5, 2, 2)
g.add_edge(5, 4, 3)
g.kruskal_algo()
```
```