forked from codebasics/py
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Dhaval Patel
committed
Dec 4, 2017
1 parent
4d2de5a
commit 77327b2
Showing
1 changed file
with
138 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"%matplotlib inline\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 23, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"year=np.array([2014,2015,2016, 2017])\n", | ||
"revenue=[86,93,85,89]\n", | ||
"profit=[22,12,16,21]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 28, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<Container object of 4 artists>" | ||
] | ||
}, | ||
"execution_count": 28, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD8CAYAAACW/ATfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADdZJREFUeJzt3H+sX3ddx/Hnm95tysaP1l5uyobcajoJmsCWGyLyI4Ri\nEIa0kWQpEVJ1SeMf6lATLRqDCInTIIGogTRMcxMHc2wzrUrAWpm6aKa3XcF1ZescG2y262VGGCjg\nwts/vp/Fa/Nt7/ne7/d7z63v5yO5+Z7vOZ9zzvt+evq6n+/5nnMiM5Ek/f/2rL4LkCRNn2EvSQUY\n9pJUgGEvSQUY9pJUgGEvSQUY9pJUgGEvSQUY9pJUwMx67mzr1q05Pz+/nruUpIve0aNHv5KZs+Ns\nY13Dfn5+nqWlpfXcpSRd9CLi0XG34WkcSSrAsJekAgx7SSrAsJekAgx7SSrAsJekAgx7SSrAsJek\nAgx7SSpgXe+gVX/m9/9lr/t/5Kbret2/VJ0je0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kq\nwLCXpAK8qUrS1HlTX/8c2UtSAYa9JBVg2EtSAYa9JBVg2EtSARfN1Th+my9Ja+fIXpIKMOwlqYCL\n5jSO1CdPI+pi58hekgow7CWpAMNekgow7CWpAMNekgow7CWpgE5hHxG/GBEnIuK+iPhERHxXRGyJ\niMMRcaq9bp52sZKktVk17CPiSuAXgIXM/CFgE7AH2A8cycwdwJH2XpK0AXU9jTMDfHdEzADPBv4N\n2AUstuWLwO7JlydJmoRVwz4zHwc+AHwJOA18NTP/CpjLzNOt2RlgbmpVSpLG0uU0zmYGo/jtwAuB\nyyPiHSvbZGYCeZ7190XEUkQsLS8vT6BkSdKoupzGeQPwxcxczsz/Bu4EfgR4IiK2AbTXs8NWzswD\nmbmQmQuzs7OTqluSNIIuYf8l4Icj4tkREcBO4CRwCNjb2uwFDk6nREnSuFZ96mVm3hMRtwPHgKeB\ne4EDwBXAbRFxA/AocP00C5UkrV2nRxxn5nuA95wz+1sMRvmSpA3OO2glqQDDXpIKMOwlqQDDXpIK\nMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwl\nqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDD\nXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIK6BT2EfH8iLg9Ir4QEScj4pURsSUiDkfEqfa6\nedrFSpLWpuvI/sPApzPzJcDLgJPAfuBIZu4AjrT3kqQNaNWwj4jnAa8FbgbIzG9n5n8Au4DF1mwR\n2D2tIiVJ4+kyst8OLAN/HBH3RsTHIuJyYC4zT7c2Z4C5YStHxL6IWIqIpeXl5clULUkaSZewnwGu\nBT6SmdcA3+CcUzaZmUAOWzkzD2TmQmYuzM7OjluvJGkNuoT9Y8BjmXlPe387g/B/IiK2AbTXs9Mp\nUZI0rlXDPjPPAF+OiB9os3YC9wOHgL1t3l7g4FQqlCSNbaZju58HbomIS4GHgZ9m8Ifitoi4AXgU\nuH46JUqSxtUp7DPzOLAwZNHOyZYjSZoG76CVpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIM\ne0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kq\nwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCXpAIMe0kqwLCX\npAIMe0kqwLCXpAI6h31EbIqIeyPiL9r7LRFxOCJOtdfN0ytTkjSOUUb2NwInV7zfDxzJzB3AkfZe\nkrQBdQr7iLgKuA742IrZu4DFNr0I7J5saZKkSek6sv8Q8CvAd1bMm8vM0236DDA3ycIkSZOzathH\nxFuAs5l59HxtMjOBPM/6+yJiKSKWlpeX116pJGnNuozsXwW8NSIeAW4FXh8RfwI8ERHbANrr2WEr\nZ+aBzFzIzIXZ2dkJlS1JGsWqYZ+Z787MqzJzHtgD/E1mvgM4BOxtzfYCB6dWpSRpLONcZ38T8KMR\ncQp4Q3svSdqAZkZpnJl3AXe16SeBnZMvSZI0ad5BK0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBh\nL0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBhL0kF\nGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaSVIBhL0kFGPaS\nVIBhL0kFGPaSVIBhL0kFzPRdwEXjN5/X8/6/2u/+JV3UVh3ZR8SLIuKzEXF/RJyIiBvb/C0RcTgi\nTrXXzdMvV5K0Fl1G9k8Dv5yZxyLiOcDRiDgM/BRwJDNvioj9wH7gV6dXqiStUd+fzKH3T+erjuwz\n83RmHmvTTwEngSuBXcBia7YI7J5WkZKk8Yz0BW1EzAPXAPcAc5l5ui06A8ydZ519EbEUEUvLy8tj\nlCpJWqvOYR8RVwB3AO/KzK+tXJaZCeSw9TLzQGYuZObC7OzsWMVKktamU9hHxCUMgv6WzLyzzX4i\nIra15duAs9MpUZI0ri5X4wRwM3AyMz+4YtEhYG+b3gscnHx5kqRJ6HI1zquAdwL/EhHH27xfA24C\nbouIG4BHgeunU6IkaVyrhn1m3g3EeRbvnGw5kqRp8HEJklSAYS9JBRj2klSAD0KTLgZ93+7vg/gu\neo7sJakAw16SCjDsJakAw16SCjDsJakAw16SCjDsJakAw16SCvCmKq0PbwqSeuXIXpIKMOwlqQDD\nXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIK\nMOwlqQDDXpIKMOwlqQDDXpIKMOwlqQDDXpIKMOwlqYCxwj4ifiwiHoiIhyJi/6SKkiRN1prDPiI2\nAX8IvAl4KfD2iHjppAqTJE3OOCP7VwAPZebDmflt4FZg12TKkiRN0jhhfyXw5RXvH2vzJEkbzMy0\ndxAR+4B97e3XI+KB8zTdCnxl2vWsVfRd33tjtRb234XYf+Ox/8Y3Xh++eNzdjxP2jwMvWvH+qjbv\n/8jMA8CB1TYWEUuZuTBGPVNlfeOxvvFY33g2en0w/RrHOY3zz8COiNgeEZcCe4BDkylLkjRJax7Z\nZ+bTEfFzwGeATcAfZeaJiVUmSZqYsc7ZZ+angE9NqJZVT/X0zPrGY33jsb7xbPT6YMo1RmZOc/uS\npA3AxyVIUgWZOfYPg6tyPgvcD5wAbmzztwCHgVPtdXOb/z2t/deBPzhnW58GPte281Fg05D9zQP/\nBRxvPx9dr/pWbPMQcN8F9vlu4CHgAeCNG6m+PvsPuKv1yTP7fsG4/ddHjT334aUMPvI/CHwBeNtG\nOga71NdX/wHPWbHP4wwudfzQRum/rvWN2n+ZObGw3wZcu6LYBxk8QuF3gf1t/n7gd9r05cCrgZ8d\ncqA8t70GcAew5zy/6HmDdpr1teU/AXz8fDW0bX8OuAzYDvwrQ/5o9Vhfb/3HIEgXVtnfSP3XU419\n9uF7gfe36WcBWzfSMdixvt7675ztHgVeu5H6r2N9I/VfZk7mNE5mns7MY236KeAkg7tpdwGLrdki\nsLu1+UZm3g18c8i2vtYmZxiMEMb+UmGS9UXEFcAvAe+/wC53Abdm5rcy84sMRgev2ED1jWSS9XU0\nUv/1VONIJlzfzwC/3dp9JzOH3YjT2zHYsb6RTOPfNyKuBl4A/P2QxX32X5f6Rjbxc/YRMQ9cA9wD\nzGXm6bboDDDXcRufAc4CTwG3n6fZ9og4HhF/GxGvWcf63gf8HvCfF2iz5kdJrFN90F//ASy2ff9G\nRAy7rXCsR3GsU43QQx9GxPPb5Psi4lhEfDIihq3TyzE4Qn3Q7zEIg3uD/jTbUPkcff4f7lIfjNh/\nEw37Nqq8A3jXihE6AK3gTqP0zHwjg49FlwGvH9LkNPC9mflyBqPYj0fEc6ddX0S8HPj+zPyzLr/H\nqNaxvl76r/nJzPxB4DXt550d1ulsHWvsqw9nGNyt/g+ZeS3wj8AHVttvV+tYX5/H4DP2AJ8Yof2q\n1rG+kftvYmEfEZcw+CVvycw72+wnImJbW76NwWi9k8z8JnCQIU/SbB+tnmzTRxmcT7t6Hep7JbAQ\nEY8AdwNXR8RdQ9p1epREX/X12H9k5uPt9SkG3ysM+2g8cv+td4099uGTDD61PbP+J4Frh7Tr6xjs\nVF+fx2Br+zJgpu17mL76r1N9a+m/iYR9+5h7M3AyMz+4YtEhYG+b3ssgvC+0nStWdMwMcB2Db/PP\nbTcbg+fpExHfB+wAHp52fZn5kcx8YWbOM/hy5cHMfN2QpoeAPRFxWURsb/X900apr6/+i4iZiNja\npi8B3gLcN6TpSP3XR409HoMJ/DnwujZrJ4MrQM7V1zHYqb6++m+Ft3PhUX0v/de1vlH7D5jY1Tiv\nZvDx5PP876VAb2ZwedERBpcd/TWwZcU6jwD/zuDSo8cYfHM9x+CZO59n8B/s9xn8dQN4K/Bbbfpt\nDC5vOg4cA358Peo7Z5vzrPg2fGV97f2vM/hr+wDwpo1UX1/9x+AKhKNtOyeAD9OucBin//qosa8+\nbPNfDPxd29YRBh/nx+rD9a6vz/5ryx4GXnLOPjZE/3Wpb9T+y0zvoJWkCryDVpIKMOwlqQDDXpIK\nMOwlqQDDXpIKMOwlqQDDXpIKMOwlqYD/AVyUXYFUeRfSAAAAAElFTkSuQmCC\n", | ||
"text/plain": [ | ||
"<matplotlib.figure.Figure at 0x7a513a7f1ba8>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"plt.bar(year-0.2, revenue,width=0.4,align='center')\n", | ||
"plt.bar(year+0.2, profit,width=0.4,align='center')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 38, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"company=['WMT','AMZN','MSFT','FB']\n", | ||
"revenue=[485,136,89,27]\n", | ||
"profit=[112,2,34,12]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 30, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"ypos = np.arange(len(company))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 39, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<matplotlib.legend.Legend at 0x7a513bd8d780>" | ||
] | ||
}, | ||
"execution_count": 39, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHqJJREFUeJzt3Xu8FmW99/HPV1BQIUVFQha4MN2GqKGuTE13aAr2eMCn\nrYKPGRaedrStXRpgbTXbPA+lpmmU4uEVaaKoJWy1PKB42JQHiq0iKSRLXSByMBEVUfD3/DHXwnE1\n63DDute9Fnzfr9f9Yuaaa2Z+My7v331dM3ONIgIzM7OGtqh0AGZm1j45QZiZWSEnCDMzK+QEYWZm\nhZwgzMyskBOEmZkVcoIwAyTVSjqy0nFUiqR+kt6W1KnSsVj74QRhrUpSSNq9QdnFkm7OzV8gaWH6\nQqqTdFsT2ztU0ixJKyW9Iem/JX02LTtd0uPlO5rSSTpQ0r2S3kzxPinpa5WOqzkR8UpEdIuIdZWO\nxdoPJwhrU5JGAqcBR0ZEN6AGmNFI3U8AdwNXAzsAfYAfAmvaJtrSSDoYeAh4BNgd2BH4V+DoSsbV\nHEmdKx2DtU9OENbWPgvcFxF/A4iIJRExqZG6/5TqTImIdRGxOiLuj4hnJA0ArgEOTi2RNwEkbSfp\n15KWSXpZ0g8krf87l3SmpHmSVkl6XtL+DXcqaUBq4ZyS5sdIWpTWeUHSFxuJ91JgckT8OCKWR2Z2\nRAxvsP8FqXUxXdIuuWUh6RuS5qd9/UjSp1IL6i1JUyVtleoOTq2vCyQtT11kp+a2dYykv6T1XpV0\ncW5ZddrXKEmvAA/lyjqnOqdLeinFsbB+25K2SOf0ZUlL07nersF2R0p6JcX1/UbOlXUEEeGPP632\nAQLYvUHZxcDNaforwBvA+WSth05NbOsTwApgMvAloEeD5acDjzco+zUwDegOVAMvAqPSspOARWRJ\nSmS/8ndNy2qBI4H9gVeAY1P5nsCrwC5pvhr4VEGs2wDrgMObOJ4jgOVpH13IWkaPNjh309JxDyRr\nKc0AdgO2A54HRqa6g4G1wE/Ttr4AvAPsmVu+D9mPwH2B14ETcscQ6VxtC2ydK+ucyt7Kbas3MDBN\nfx1YkGLqBvwWuKnBdq9L2/xMOoYBlf679GfDPhUPwJ9N69NcgkjzpwIPpi+0FcCYJrY3APgVUJe+\nEKcDvdKyjyUIoBPwPrBXruxsYGaavg/4ViP7qSXrvqoDBufKdweWpuSxZRNx9knH/ukm6twA/CQ3\n3w34AKjOnbvP55bPzp8b4HLgyjRdnyC2zS2fCvxHI/u+ErgiTdd/ke+WW94wQbwJ/AuwdYPtzAC+\nkZvfMx1D59w2qnLLnwRGVPrv0p8N+7iLyVrbOmDLBmVbkn2JABARv4mII4HtgXOAH0kaWrSxiJgX\nEadHRBWwN7AL2ZddkZ3Svl7Olb1M9uUN0Bf4WxOxnwPMioiZuf0vAL5NluSWSro13y2U83fgQ7Jf\n243ZJR9bRLxNliD75Oq8npteXTDfLb/PiHgnN/9y2geSPifp4dTVtjId204N4nm1KMi0zeFpndck\n3SPp00XHkKY7A71yZUty0+82iNk6ECcIa22vkP2SzOvPx79UAIiIDyLiduAZsi//JkXEX8laE/V1\nGw5FvJwsEe2aK+tH1q0E2Rfip5rYxTlAP0lXNNjvLRFxaNpuAD8uiO1d4I9kv7obszgfm6RtyS5k\nL2p0jab1SNuo1y/tA+AWstZW34jYjux6jRqG3diGI+K+iDiKLOH9lazb6B+OIe1zLR9PZLaJcIKw\n1nYb8ANJVemC5pHAccAdsP7i5zGSuqflXyLrb3+i4YYkfVrSdyVVpfm+wCnAn1KV14Gq+gu3kd2i\nORUYn7a/K/AdoP4W2+uB8yQdoMzuqU69VWR3HP2zpAlpn3tKOkJSF+A9sl/xHzZy7N8DTpd0vqQd\n0/qfkXRrWj4F+JqkQWl7/xd4IiJqW3ZqC/1Q0laSDgOOBW5P5d2BNyLiPUkHAv+npRuU1EvSsJR8\n1gBv89ExTwH+XVJ/Sd3SMdwWEWs34hisnXKCsNZ2CTALeJys2+UnwKkR8Vxa/hZwAVlL4820/F8j\nouh5hlXA54AnJL1DlhieA76blj8EzAWWSFqeyv6N7NrGSymGW4AbAVJrZXwqWwXcRXb77HoR8SZw\nFPAlST8iuwA8gax1sgTYGRhXdOARMYvsQvQRwEuS3gAmAfem5Q8C/wHcCbxG1poZUXgWW2YJ2Tle\nDPwGOCe1sgC+AVwiaRVwIVnibKktyBLrYrIbCr5AdrsuZOfyJuBRYCFZ0vy3jTgGa8cU4RcGmXU0\nkgaTXfivqnQstulyC8LMzAo5QZiZWSF3MZmZWSG3IMzMrFCHHqRrp512iurq6kqHYWbWocyePXt5\nRPRsrl5ZE4SkWrLbCdcBayOiRtIOZPfKV5MNb3ByRPw91R8HjEr1z42I+5rafnV1NU8//XTZ4jcz\n2xRJ+ocHV4u0RRfT4RExKCJq0vxYYEZE7EE2rstYAEl7kd0TPpDsYaVfyC8vMTOrmEpcgxhGNjon\n6d8TcuW3RsSaiFhINmLkgRWIz8zMKH+CCOBBSbMlnZXKekXEa2l6CR8N8tWHjw8eVsfHBzEDQNJZ\nkp6W9PSyZcvKFbeZ2Wav3BepD42IRZJ2Bh6Q9Nf8wogISSXdZxvZy2UmAdTU1PgeXbNN3AcffEBd\nXR3vvfdepUPpcLp27UpVVRVbbtlwgOWWKWuCiIhF6d+lkn5H1mX0uqTeEfGapN5kY+1DNqJl39zq\nVWz4KJdmtomoq6uje/fuVFdXIzUckNYaExGsWLGCuro6+vfvv0HbKFsXk6RtJXWvnwaGkA20Nh0Y\nmaqNJHuDFql8hKQukvoDe5C9bMTMNmPvvfceO+64o5NDiSSx4447blTLq5wtiF7A79J/1M7ALRHx\nB0lPAVMljSJ7R8DJABExV9JUstcqrgVGp+GbzWwz5+SwYTb2vJUtQUTES2TvpG1YvgIofOl7RIwn\nG47ZzMwqrEM/SW1mm5/qsfe06vZqJxzTbJ1OnTqxzz77sHbtWvr3789NN93E9ttv36pxtEebdYJo\n7T+0UrXkD9PMKm/rrbdmzpw5AIwcOZKJEyfy/e9/v8JRlZ8H6zMzK8HBBx/MokUf3WB56aWX8tnP\nfpZ9992Xiy66CICxY8cyceLE9XUuvvhiLrvsskbr19bWMmDAAM4880wGDhzIkCFDWL16NQCDBw9e\nP6TQ8uXLqR9/bt26dZx//vnrt3Xttde2+rE6QZiZtdC6deuYMWMGxx9/PAD3338/8+fP58knn2TO\nnDnMnj2bRx99lOHDhzN16kdveZ06dSrDhw9vtD7A/PnzGT16NHPnzmX77bfnzjvvbDKWG264ge22\n246nnnqKp556iuuuu46FCxe26vFu1l1MZmYtsXr1agYNGsSiRYsYMGAARx11FJAliPvvv5/99tsP\ngLfffpv58+czatQoli5dyuLFi1m2bBk9evSgb9++/OxnPyus369fP/r378+gQYMAOOCAA6itrW0y\npvvvv59nnnmGO+64A4CVK1cyf/78DX7moYgThJlZM+qvQbz77rsMHTqUiRMncu655xIRjBs3jrPP\nPvsf1jnppJO44447WLJkCcOHDwdotH5tbS1dunRZP9+pU6f1XUydO3fmww8/BPjYMw0RwdVXX83Q\noUNb/XjruYvJzKyFttlmG6666iouv/xy1q5dy9ChQ7nxxht5++23AVi0aBFLl2aDQwwfPpxbb72V\nO+64g5NOOgmgyfqNqa6uZvbs2QDrWwv12/rlL3/JBx98AMCLL77IO++806rH6xaEmXUolb77b7/9\n9mPfffdlypQpnHbaacybN4+DDz4YgG7dunHzzTez8847M3DgQFatWkWfPn3o3bs3AEOGDCms36lT\n4282OO+88zj55JOZNGkSxxzz0bGfccYZ1NbWsv/++xMR9OzZk7vuuqtVj7VDv5O6pqYmNuaFQb7N\n1az9mzdvHgMGDKh0GB1W0fmTNDv3jp5GuYvJzMwKOUGYmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZ\nFfJzEGbWsVy8XStvb2WzVfLDfQ8YMIDJkyezzTbbtHgXt99+OxdeeCGf/OQnufTSS/n1r3/NVVdd\nxcyZM9lqq6045JBDNuYIysYtCDOzZtQPtfHcc8+x1VZbcc0113xseUSsHw6jyA033MB1113Hww8/\nTE1NDVdddRUAM2fOZNasWWWNfWM4QZiZleCwww5jwYIF1NbWsueee/LVr36Vvffem1dffZUpU6aw\nzz77sPfeezNmzBgALrnkEh5//HFGjRrF+eefz8yZMzn22GOpra3lmmuu4YorrmDQoEE89thjFT6y\nf+QuJjOzFlq7di2///3vOfroo4FsiO7Jkydz0EEHsXjxYsaMGcPs2bPp0aMHQ4YM4a677uLCCy/k\noYce4rLLLqOmpoaZM2cC2RhL55xzDt26deO8886r4FE1zi0IM7Nm1A/3XVNTQ79+/Rg1ahQAu+66\nKwcddBAATz31FIMHD6Znz5507tyZU089df27HjoqtyDMzJqRf+Vo3rbbbluBaNqOWxBmZq3gwAMP\n5JFHHmH58uWsW7eOKVOm8IUvfKHJdbp3786qVavaKMLSuQVhZh1LC25LrYTevXszYcIEDj/8cCKC\nY445hmHDhjW5znHHHceJJ57ItGnTuPrqqznssMPaKNqW8XDfFeThvs2a5+G+N46H+zYzs1bnBGFm\nZoWcIMys3evIXeGVtLHnzQnCzNq1rl27smLFCieJEkUEK1asoGvXrhu8Dd/FZGbtWlVVFXV1dSxb\ntqzSoXQ4Xbt2paqqaoPXd4Iws3Ztyy23pH///pUOY7PkLiYzMyvkBGFmZoWcIMzMrJAThJmZFSp7\ngpDUSdJfJN2d5neQ9ICk+enfHrm64yQtkPSCpKHljs3MzBrXFi2IbwHzcvNjgRkRsQcwI80jaS9g\nBDAQOBr4haRObRCfmZkVKGuCkFQFHANcnyseBkxO05OBE3Llt0bEmohYCCwADixnfGZm1rhytyCu\nBL4H5N/m3SsiXkvTS4BeaboP8GquXl0q+xhJZ0l6WtLTfnDGzKx8ypYgJB0LLI2I2Y3ViezZ+ZKe\nn4+ISRFRExE1PXv23NgwzcysEeV8kvrzwPGS/hfQFfiEpJuB1yX1jojXJPUGlqb6i4C+ufWrUpmZ\nmVVA2VoQETEuIqoioprs4vNDEfEVYDowMlUbCUxL09OBEZK6SOoP7AE8Wa74zMysaZUYi2kCMFXS\nKOBl4GSAiJgraSrwPLAWGB0R6yoQn5mZ0UYJIiJmAjPT9Argi43UGw+Mb4uYzMysaX6S2szMCjlB\nmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARh\nZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZ\nmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZoc4tqSTpYOArwGFAb2A18BxwD3BzRKwsW4RmZlYRzbYg\nJP0eOAO4DziaLEHsBfwA6ApMk3R8OYM0M7O215IWxGkRsbxB2dvAn9Pnckk7tXpkZmZWUc22IAqS\nwwbVMTOzjqXFF6klfVnSfEkrJb0laZWkt8oZnJmZVU6LLlInPwGOi4h55QrGzMzaj1Juc33dycHM\nbPNRSgviaUm3AXcBa+oLI+K3rR6VmZlVXCktiE8A7wJDgOPS59jGKkvqKulJSf8jaa6kH6byHSQ9\nkK5nPCCpR26dcZIWSHpB0tANOyQzM2sNLW5BRMTXStz2GuCIiHhb0pbA4+mZii8DMyJigqSxwFhg\njKS9gBHAQGAX4EFJ/xQR60rcr5mZtYJmE4Skq4FobHlEnNtIeZA9LwGwZfoEMAwYnMonAzOBMan8\n1ohYAyyUtAA4EPhjC47DzMxaWUtaEE9v6MYldQJmA7sDEyPiCUm9IuK1VGUJ0CtN9wH+lFu9LpU1\n3OZZwFkA/fr129DQzMysGc0miIiYvKEbT91DgyRtD/xO0t4NloekRlsnjWxzEjAJoKampqR1zcys\n5VoyFtNOki6SdK6kbpJ+Kek5SdMk7d6SnUTEm8DDZGM5vS6pd9p2b2BpqrYI6JtbrSqVmZlZBbTk\nLqZbgC7AHsCTwEvAicDdwPWNrSSpZ2o5IGlr4Cjgr8B0YGSqNhKYlqanAyMkdZHUP7c/MzOrgJZc\ng+gVERdIEvByRFyayv8qaXQT6/UGJqfrEFsAUyPibkl/BKZKGgW8DJwMEBFzJU0FngfWAqN9B5OZ\nWeW0JEGsg/XXCxoOyvdhYytFxDPAfgXlK4AvNrLOeGB8C2IyM7Mya0mC2E3SdEC5adJ8/7JFZmZm\nFdWSBDEsN31Zg2UN583MbBPRkttcH2mLQMzMrH1pyW2u/yXpuDRcRsNlu0m6RNLXyxOemZlVSku6\nmM4EvgNcKekNYBnZu6j7AwuAn0fEtCbWNzOzDqglXUxLgO8B35NUTXb76mrgxYh4t6zRmZlZxZQy\n3Ddkg+1tGxFzgJDUvQwxmZlZO1DKO6nPBO4Ark1FVWQvDzIzs01QKS2I0cDngbcAImI+sHM5gjIz\ns8orJUGsiYj362ckdaaJ90SYmVnHVkqCeETSBcDWko4Cbgf+qzxhmZlZpZWSIMaS3eL6LHA2cC/w\ng3IEZWZmlVfKO6k/BK5LHzMz28S1OEFIWkjBNYeI2K1VIzIzs3ahxQkCqMlNdwVOAnZo3XDMzKy9\naPE1iIhYkfssiogrgWPKGJuZmVVQKV1M++dmtyBrUZTSAjEzsw6klC/4y3PTa4Fa0utCzcxs01PK\nXUyHlzMQMzNrX0rpYuoC/AtQnV8vIi5p/bDMzKzSSulimgasBGYDa8oTjpmZtRelJIiqiDi6bJGY\nmVm7UspQG7Mk7VO2SMzMrF0ppQVxKHB6eqJ6DSAgImLfskRmZmYVVUqC+FLZojAzs3anlCepXwb6\nAkek6XdLWd/MzDqWUl45ehEwBhiXirYEbi5HUGZmVnmltAD+N3A88A5ARCwGupcjKDMzq7xSEsT7\nERGkIb8lbVuekMzMrD0oJUFMlXQtsL2kM4EH8cuDzMw2WaWMxXRZehf1W8CewIUR8UDZIjMzs4oq\nZSym7wC3OSmYmW0eSuli6g7cL+kxSd+U1KtcQZmZWeWV8hzEDyNiIDAa6A08IunBxupL6ivpYUnP\nS5or6VupfAdJD0ian/7tkVtnnKQFkl6QNHQjjsvMzDbShjzothRYAqwAdm6i3lrguxGxF3AQMFrS\nXsBYYEZE7AHMSPOkZSOAgcDRwC8kddqA+MzMrBWU8qDcNyTNJPtS3xE4s6lxmCLitYj4c5peBcwD\n+gDDgMmp2mTghDQ9DLg1ItZExEJgAXBgaYdjZmatpZSxmPoC346IOaXuRFI1sB/wBNArIl5Li5YA\n9dcy+gB/yq1Wl8oabuss4CyAfv36lRqKmZm1UCnXIMYB3SR9DUBST0n9m1tPUjfgTrLk8laDba5/\n8K6EOCZFRE1E1PTs2bOUVc3MrARlHYtJ0pZkyeE3EfHbVPy6pN5peW+yaxoAi8haKfWqUpmZmVVA\n2cZikiTgBmBeRPw0t2g6MDJNjyR7lWl9+QhJXVLLZA/gyRLiMzOzVlTKNYj3IyIktXQsps8DpwHP\nSqq/bnEBMIFs2I5RwMvAyQARMVfSVOB5sjugRkfEuhLiMzOzVlRKgmg4FtPXgesbqxwRj5O9da7I\nFxtZZzwwvoSYzMysTDwWk5mZFSqlBUFKCA8ASNpC0qkR8ZuyRGZmZhXV7EVqSZ9IQ2D8XNIQZb4J\nvES6fmBmZpuelrQgbgL+DvwROIPsQrOAEzbkoTkzM+sYWpIgdouIfQAkXQ+8BvSLiPfKGpmZmVVU\nS56D+KB+It12WufkYGa26WtJC+IzkuqHyBCwdZoX2WgZnyhbdGZmVjHNJoiI8JDbZmaboQ15H4SZ\nmW0GnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZ\nmRVygjAzs0JOEGZmVsgJwszMCrXkfRBmharH3lPR/ddOOKai+zfb1LkFYWZmhZwgzMyskBOEmZkV\ncoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhfwkdSVdvF2F97+ysvs3s3bNLQgzMytU\ntgQh6UZJSyU9lyvbQdIDkuanf3vklo2TtEDSC5KGlisuMzNrmXK2IH4FHN2gbCwwIyL2AGakeSTt\nBYwABqZ1fiGpUxljMzOzZpQtQUTEo8AbDYqHAZPT9GTghFz5rRGxJiIWAguAA8sVm5mZNa+tr0H0\niojX0vQSoFea7gO8mqtXl8r+gaSzJD0t6elly5aVL1Izs81cxS5SR0QAsQHrTYqImoio6dmzZxki\nMzMzaPsE8bqk3gDp36WpfBHQN1evKpWZmVmFtHWCmA6MTNMjgWm58hGSukjqD+wBPNnGsZmZWU7Z\nHpSTNAUYDOwkqQ64CJgATJU0CngZOBkgIuZKmgo8D6wFRkfEunLFZmZmzStbgoiIUxpZ9MVG6o8H\nxpcrHrP2xu/0tvbOT1KbmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFXKCMDOzQk4QZmZWyAnCzMwK\nOUGYmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVkhJwgzMyvk\nBGFmZoWcIMzMrJAThJmZFXKCMDOzQp0rHYCZVcjF21V4/ysru39rllsQZmZWyAnCzMwKuYvJzDqk\n6rH3VHT/tROOqej+24JbEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQb3M1M9sQm8GT\n6G5BmJlZoXaXICQdLekFSQskja10PGZmm6t2lSAkdQImAl8C9gJOkbRXZaMyM9s8tbdrEAcCCyLi\nJQBJtwLDgOcrGpW1T5tBH7BZJSkiKh3DepJOBI6OiDPS/GnA5yLim7k6ZwFnpdk9gRfaPNDWsxOw\nvNJBdGA+fxvH52/jdOTzt2tE9GyuUntrQTQrIiYBkyodR2uQ9HRE1FQ6jo7K52/j+PxtnM3h/LWr\naxDAIqBvbr4qlZmZWRtrbwniKWAPSf0lbQWMAKZXOCYzs81Su+piioi1kr4J3Ad0Am6MiLkVDquc\nNomusgry+ds4Pn8bZ5M/f+3qIrWZmbUf7a2LyczM2gknCDMzK+QE0YokXSHp27n5+yRdn5u/XNJ3\nJIWk/8yV7yTpA0k/l/R9SXPSZ11u+ty2Pp62JOmEdF4+nearmzpPaf6+3PmZI2mxpCfSsl9JWiSp\nS27d2gocWptI5+rm3HxnScsk3Z3me0m6W9L/SHpe0r2pvFrS6gbn8ezc9PuSnk3TEyp1fJXW4P/F\nOem8DZa0Ms0/I+lBSTtXOtbW5ATRuv4bOARA0hZkD9IMzC0/BJgFLATybzw/CZgLEBHjI2JQRAwC\nVtdPR8RVbXEAFXQK8Hj6t16j5wkgIobmztXngbeAH+TqrwO+XraI25d3gL0lbZ3mj+Ljt4hfAjwQ\nEZ+JiL2A/Dhnf8v9nQ2KiGtz53UxcHia35zHRlvd4BzVpvLH0vy+ZHdhjq5ciK3PCaJ1zQIOTtMD\ngeeAVZJ6pF+yA4A3gHeBeZLqH7IZDkxt62DbC0ndgEOBUWS3Ntcr5Tz9DLg3Ih7IlV0J/LukdnW3\nXhndy0cJ9RRgSm5Zb6CufiYinmnDuDZ5kgR0B/5e6VhakxNEK4qIxcBaSf3IWgt/BJ4gSxo1wLPA\n+6n6rcAISX3JfukubvuI241hwB8i4kVghaQDcsuaPU+Svkx2fsc1WPQKWavktLJE3f7Un6uuwL5k\nf3v1JgI3SHo4dWPuklv2qVzXycS2DLgD2Tp3jn6XKz9M0hyyv7UjgRsrE155bC6/rNrSLLLkcAjw\nU6BPml5J1gVV7w/Aj4DXgdvaOMb25hSyFgBkX3KnAD9P802eJ0l90rpDI2JNwbb/HzANuKeVY253\nIuIZSdVk5+/eBsvuk7QbcDTZaMl/kbR3Wvy31J1kjVvdyDl6LCKOBZA0BvgJcE6bRlZGbkG0vvrr\nEPuQdTH9iawFUX/9AYCIeB+YDXwXuKPtw2wfJO0AHAFcny4inw+cDAiaPk+pWT8ZmBARhSP+RsR8\nYE7a5uZgOnAZH+9eAiAi3oiIWyLiNLL+8n9u6+A2cdPZxM6pE0TrmwUcC7wREesi4g1ge7IkMatB\n3cuBManO5upE4KaI2DUiqiOiL9nF6fyYXI2dp/OA9yKiuW6R8anu5uBG4IcR8Wy+UNIRkrZJ092B\nT5F1i1jrORT4W6WDaE3uYmp9z5LdvXRLg7JuEbE8XZAFIA0jsikPJdISpwA/blB2J7nrCU2cp/8E\n6lIfcL2/R8Th+UoRMVfSn4H9Wyfk9isi6oCiO94OAH4uaS3ZD8PrI+Kp1CVlG67+GoTIupHPqHA8\nrcpDbZiZWSF3MZmZWSEnCDMzK+QEYWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlbo/wNCBqIn5d9E\n1wAAAABJRU5ErkJggg==\n", | ||
"text/plain": [ | ||
"<matplotlib.figure.Figure at 0x7a513bd0d160>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"plt.bar(ypos-0.2,revenue, width=0.4, label=\"Revenue\")\n", | ||
"plt.bar(ypos+0.2,profit, width=0.4,label=\"Profit\")\n", | ||
"\n", | ||
"plt.xticks(ypos,company)\n", | ||
"plt.ylabel(\"Revenue(Bln)\")\n", | ||
"plt.title('US Stocks Comparison')\n", | ||
"plt.legend()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |