Skip to content
/ LHM Public
forked from aigc3d/LHM

Code of LHM: Large Animatable Human Reconstruction Model for Single Image to 3D in Seconds

License

Notifications You must be signed in to change notification settings

sjyi/LHM

 
 

Repository files navigation

- Official PyTorch Implementation

Tongyi Lab, Alibaba Group

Project Website arXiv Paper HuggingFace ModelScope MotionShop2 Apache License

如果您熟悉中文,可以阅读中文版本的README

📢 Latest Updates

[April 3, 2025] We release LHM-500M-HF & LHM-1B-HF, which supports half-body input, making it more stable and efficient.
[April 2, 2025] We release official ComfyUI Nodes and workflow for custom video animation! 🔥🔥🔥 Try the ComfyUI branch.
[March 25, 2025] The online demo of ModelScope Space has been released: 500M model Only.
[March 24, 2025] Is SAM2 difficult to install😭😭😭? 👉 It is compatible with rembg!
[March 20, 2025] Release video motion processing pipeline
[March 19, 2025] Local Gradio App.py optimization: Faster and More Stable 🔥🔥🔥
[March 15, 2025] Inference Time Optimization: 30% Faster
[March 13, 2025] Initial release with:
✅ Inference codebase
✅ Pretrained LHM-0.5B model
✅ Pretrained LHM-1B model
✅ Real-time rendering pipeline
✅ Huggingface Online Demo

TODO List

  • Core Inference Pipeline (v0.1) 🔥🔥🔥
  • HuggingFace Demo Integration 🤗🤗🤗
  • ModelScope Deployment
  • Motion Processing Scripts
  • Training Codes Release

🚀 Getting Started

We provide a video that teaches us how to install LHM step by step on bilibili, submitted by 站长推荐推荐.

We provide a video that teaches us how to install LHM-ComfyUI step by step on bilibili, submitted by 站长推荐推荐.

Build from Docker

Please sure you had install nvidia-docker in our system.

# Linux System only
# CUDA 121
# step0. download docker images
wget -P lhm_cuda_dockers ./ https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/for_lingteng/LHM/LHM_Docker/lhm_cuda121.tar 

# step1. build from docker file
sudo docker load -i  ./lhm_cuda_dockers/lhm_cuda121.tar 

# step2. run docker_file and open the communication port 7860
sudo docker run -p 7860:7860 -v PATH/FOLDER:DOCKER_WORKSPACES -it lhm:cuda_121 /bin/bash

Environment Setup

Clone the repository.

git clone [email protected]:aigc3d/LHM.git
cd LHM

Windows Installation

Set Up a Virtual Environment Open Command Prompt (CMD), navigate to the project folder, and run:

python -m venv lhm_env
lhm_env\Scripts\activate
install_cu121.bat

python ./app.py
# cuda 11.8
pip install rembg
sh ./install_cu118.sh

# cuda 12.1
sh ./install_cu121.sh

The installation has been tested with python3.10, CUDA 11.8 or CUDA 12.1. Or you can install dependencies step by step, following INSTALL.md.

Model Weights

Please note that the model will be downloaded automatically if you do not download it yourself.

Model Training Data BH-T Layers ModelScope HuggingFace Inference Time input requirement
LHM-500M 300K Videos + 5K Synthetic Data 5 ModelScope huggingface 2.01 s full body
LHM-500M-HF 300K Videos + 5K Synthetic Data 5 ModelScope huggingface 2.01 s half & full body
LHM-1.0B 300K Videos + 5K Synthetic Data 15 ModelScope huggingface 6.57 s full body
LHM-1B-HF 300K Videos + 5K Synthetic Data 5 ModelScope huggingface 6.57 s half & full body

Model cards with additional details can be found in model_card.md.

Download from HuggingFace

from huggingface_hub import snapshot_download 
# 500M-HF Model
model_dir = snapshot_download(repo_id='3DAIGC/LHM-500M-HF', cache_dir='./pretrained_models/huggingface')
# 500M Model
model_dir = snapshot_download(repo_id='3DAIGC/LHM-500M', cache_dir='./pretrained_models/huggingface')
# 1B Model
model_dir = snapshot_download(repo_id='3DAIGC/LHM-1B', cache_dir='./pretrained_models/huggingface')
# 1B-HF Model
model_dir = snapshot_download(repo_id='3DAIGC/LHM-1B-HF', cache_dir='./pretrained_models/huggingface')

Download from ModelScope

from modelscope import snapshot_download
# 500M-HF Model
model_dir = snapshot_download(model_id='Damo_XR_Lab/LHM-500M-HF', cache_dir='./pretrained_models')
# 500M Model
model_dir = snapshot_download(model_id='Damo_XR_Lab/LHM-500M', cache_dir='./pretrained_models')
# 1B Model
model_dir = snapshot_download(model_id='Damo_XR_Lab/LHM-1B', cache_dir='./pretrained_models')
# 1B-HF Model
model_dir = snapshot_download(model_id='Damo_XR_Lab/LHM-1B-HF', cache_dir='./pretrained_models')

Download Prior Model Weights

# Download prior model weights
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LHM/LHM_prior_model.tar 
tar -xvf LHM_prior_model.tar 

Data Motion Preparation

We provide the test motion examples, we will update the processing scripts ASAP :).

# Download prior model weights
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LHM/motion_video.tar
tar -xvf ./motion_video.tar 

After downloading weights and data, the folder of the project structure seems like:

├── configs
│   ├── inference
│   ├── accelerate-train-1gpu.yaml
│   ├── accelerate-train-deepspeed.yaml
│   ├── accelerate-train.yaml
│   └── infer-gradio.yaml
├── engine
│   ├── BiRefNet
│   ├── pose_estimation
│   ├── SegmentAPI
├── example_data
│   └── test_data
├── exps
│   ├── releases
├── LHM
│   ├── datasets
│   ├── losses
│   ├── models
│   ├── outputs
│   ├── runners
│   ├── utils
│   ├── launch.py
├── pretrained_models
│   ├── dense_sample_points
│   ├── gagatracker
│   ├── human_model_files
│   ├── sam2
│   ├── sapiens
│   ├── voxel_grid
│   ├── arcface_resnet18.pth
│   ├── BiRefNet-general-epoch_244.pth
├── scripts
│   ├── exp
│   ├── convert_hf.py
│   └── upload_hub.py
├── tools
│   ├── metrics
├── train_data
│   ├── example_imgs
│   ├── motion_video
├── inference.sh
├── README.md
├── requirements.txt

💻 Local Gradio Run

Now, we support user motion sequence input. As the pose estimator requires some GPU memory, this Gradio application requires at least 24 GB of GPU memory to run LHM-500M.

# Support user motion sequence input. As the pose estimator requires some GPU memory, this Gradio application requires at least 24 GB of GPU memory to run LHM-500M.
python ./app_motion.py  
python ./app_motion.py  --model_name LHM-1B-HF

# preprocessing video sequence
python ./app.py
python ./app.py --model_name LHM-1B

🏃 Inference Pipeline

Now we support upper-body image input!

# MODEL_NAME={LHM-500M-HF, LHM-500M, LHM-1B, LHM-1B-HF}
# bash ./inference.sh LHM-500M-HF ./train_data/example_imgs/ ./train_data/motion_video/mimo1/smplx_params
# bash ./inference.sh LHM-500M ./train_data/example_imgs/ ./train_data/motion_video/mimo1/smplx_params
# bash ./inference.sh LHM-1B ./train_data/example_imgs/ ./train_data/motion_video/mimo1/smplx_params

# animation
bash inference.sh ${MODEL_NAME} ${IMAGE_PATH_OR_FOLDER}  ${MOTION_SEQ}

# export mesh 
bash ./inference_mesh.sh ${MODEL_NAME} 

Custom Video Motion Processing

  • Download model weights for motion processing.

    wget -P ./pretrained_models/human_model_files/pose_estimate https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LHM/yolov8x.pt
    wget -P ./pretrained_models/human_model_files/pose_estimate https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LHM/vitpose-h-wholebody.pth
  • Install extra dependencies.

    cd ./engine/pose_estimation
    pip install mmcv==1.3.9
    pip install -v -e third-party/ViTPose
    pip install ultralytics
  • Run the script.

    # python ./engine/pose_estimation/video2motion.py --video_path ./train_data/demo.mp4 --output_path ./train_data/custom_motion
    
    python ./engine/pose_estimation/video2motion.py --video_path ${VIDEO_PATH} --output_path ${OUTPUT_PATH}
  • Use the motion to drive the avatar.

    # if not sam2? pip install rembg.
    # bash ./inference.sh LHM-500M-HF ./train_data/example_imgs/ ./train_data/custom_motion/demo/smplx_params
    # bash ./inference.sh LHM-1B-HF ./train_data/example_imgs/ ./train_data/custom_motion/demo/smplx_params
    
    bash inference.sh ${MODEL_NAME} ${IMAGE_PATH_OR_FOLDER}  ${OUTPUT_PATH}/${VIDEO_NAME}/smplx_params

Compute Metric

We provide some simple scripts to compute the metrics.

# download pretrain model into ./pretrained_models/
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LHM/arcface_resnet18.pth
# Face Similarity
python ./tools/metrics/compute_facesimilarity.py -f1 ${gt_folder} -f2 ${results_folder}
# PSNR 
python ./tools/metrics/compute_psnr.py -f1 ${gt_folder} -f2 ${results_folder}
# SSIM LPIPS 
python ./tools/metrics/compute_ssim_lpips.py -f1 ${gt_folder} -f2 ${results_folder} 

ComfyUI Node of LHM

We have implemented a standard workflow and related nodes for customlize video animation. You can use any character and any driven videos this time! See branch feat/comfyui for more information!

Contribute Needed

We need a comfyui windows install guide of our feat/comfyui branch. If you are familiar with comfyui and successfully install it on windows, welcome to submit a pr to update windows install guide for our community!

Acknowledgement

This work is built on many amazing research works and open-source projects:

Thanks for their excellent works and great contribution to 3D generation and 3D digital human area.

We would like to express our sincere gratitude to 站长推荐推荐 for the installation tutorial video on bilibili.

More Works

Welcome to follow our team other interesting works:

✨ Star History

Star History

Citation

@inproceedings{qiu2025LHM,
  title={LHM: Large Animatable Human Reconstruction Model from a Single Image in Seconds},
  author={Lingteng Qiu and Xiaodong Gu and Peihao Li  and Qi Zuo
     and Weichao Shen and Junfei Zhang and Kejie Qiu and Weihao Yuan
     and Guanying Chen and Zilong Dong and Liefeng Bo 
    },
  booktitle={arXiv preprint arXiv:2503.10625},
  year={2025}
}

About

Code of LHM: Large Animatable Human Reconstruction Model for Single Image to 3D in Seconds

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 59.6%
  • Jupyter Notebook 40.1%
  • Other 0.3%