Skip to content

sl-sergei/object-tracking-line-crossing-area-intrusion

 
 

Repository files navigation

Object Tracking with Line Crossing and Area Intrusion Detection

This program uses an object detection deep learning model and a re-identification model to find and track the objects in a movie. Then, the program will track the trajectory of the objects and check if the objects cross the defined virtual lines or the objects are inside the defined areas. The program uses Intel(r) Distribution of OpenVINO(tm) toolkit for deep learning inferencing.
To track the objects, the program extracts the feature vectors from the objects which consists of 256 FP values with the re-identification DL model. The program can identify which object is most similar to the objects in the previous frame and record the trajectory. The L2 norm (or the distance) of those feature vectores represents the similarity of the objects. This program uses cosine distance to check the similarity between the objects.
The line crossing check and area intrusion check are done by regular (meaning, non deep learning based) arithmetic algorithm.

このプログラムはディープラーニングの物体検出モデルと特徴抽出(re-identification)モデルを用いて、ムービーフレーム中のオブジェクトを検出し、追跡するプログラムです。プログラムは見つけたオブジェクトの軌跡を記録し、オブジェクトが定義された仮想ラインを超えたり定義されたエリアに侵入したことを検出します。ディープラーニングの推論にはIntel(r) Distribution of OpenVINO(tm) toolkitを利用しています。
オブジェクトの追跡のために、プログラムは特徴抽出モデルを使用して見つけたオブジェクトから256個の浮動小数点数値からなる特徴ベクトルを抽出します。この特徴ベクトル同士のL2ノルム(=距離)がオブジェクト同士の類似度を表します。このプログラムではノルムの計算にコサイン距離を使用しています。
ラインクロスとエリア侵入の判定には通常の(ディープラーニングベースではない)数学的アルゴリズムを使用しています。

Object Tracking and Line Crossing Demo

object-track

Required DL Models to Run This Demo

The demo expects the following models in the Intermediate Representation (IR) format:

  • For person / pedestrian detection and re-identification

    • pedestrian-detection-adas-0002
    • person-reidentification-retail-0031
  • For face detection and re-identification

    • face-detection-adas-0001
    • face-reidentification-retail-0095

You can download these models from OpenVINO Open Model Zoo. In the models.lst is the list of appropriate models for this demo that can be obtained via Model downloader. Please see more information about Model downloader here.

How to Run

0. Prerequisites

  • OpenVINO 2020.2
    • If you haven't installed it, go to the OpenVINO web page and follow the Get Started guide to do it.

1. Install dependencies

The demo depends on:

  • opencv-python
  • numpy
  • scipy
  • munkres

To install all the required Python modules you can use:

(Linux) pip3 install -r requirements.txt
(Win10) pip install -r requirements.txt

2. Download DL models from OMZ

Use Model Downloader to download the required models and convert the downloaded model into OpenVINO IR models with Model Converter.

(Linux) python3 $INTEL_OPENVINO_DIR/deployment_tools/tools/model_downloader/downloader.py --list models.lst
(Win10) python "%INTEL_OPENVINO_DIR%\deployment_tools\tools\model_downloader\downloader.py" --list models.lst

3. Run the demo app

(Linux) python3 object-detection-and-line-cross.py
(Win10) python object-detection-and-line-cross.py

Demo Output

The application draws the results on the screen.

Tested Environment

  • Windows 10 x64 1909 and Ubuntu 18.04 LTS
  • Intel(r) Distribution of OpenVINO(tm) toolkit 2020.2
  • Python 3.6.5 x64

See Also

About

Deep learning based object tracking with line crossing and area intrusion detection

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%