Skip to content

ZeroC is a neuro-symbolic method that trained with elementary visual concepts and relations, can zero-shot recognize and acquire more complex, hierarchical concepts, even across domains

License

Notifications You must be signed in to change notification settings

snap-stanford/zeroc

Repository files navigation

ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time

Paper | Poster | Slides | Project page

This is the official repo for ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time (Wu et al. NeurIPS 2022). ZeroC is a neuro-symbolic architecture that after pretrained with simpler concepts and relations, can recognize and acquire novel, more complex concepts in a zero-shot way.

ZeroC represents concepts as graphs of constituent concept models (as nodes) and their relations (as edges). We design ZeroC architecture so that it allows a one-to-one mapping between an abstract, symbolic graph structure of a concept and its corresponding energy-based model that provides a probability model for concepts and relations (by summing over constituent concept and relation EBMs according to the graph, see figure above). After pre-trained with simpler concepts and relations, at inference time, without further training, ZeroC can perform:

  • Zero-shot concept recognition: recognize a more complex, hierarchical concept from image, given the symbolic graph structure of this hierarchical concept.

  • Zero-shot concept aquisition: given a single demonstration of an image containing a hierarchical concept, infer its graph structure. Furthermore, this graph structure can be transferred across domains (e.g., from 2D image to 3D image), allowing the ZeroC in the second domain to directly recognize such hierarchical concept (see figure below):

Installation

  1. First clone the directory. This repo depends on the concept_library for functionality of concept classes and model architecture, and BabyARC as a dataset-generating engine. Therefore, run the following command to initialize the submodules:
git submodule init; git submodule update

(If showing error of no permission, need to first add a new SSH key to your GitHub account.)

  1. Install dependencies.

Create a new environment using conda, with Python >= 3.7. Install PyTorch (version >= 1.10.1). The repo is tested with PyTorch version of 1.10.1 and there is no guarentee that other version works. Then install other dependencies via:

pip install -r requirements.txt

Dataset:

The dataset files can be generated using the BabyARC engine with the datasets/BabyARC submodule, or directly downloaded via this link. If download from the above link, put the downloaded data ("*.p" files) under the ./datasets/data/ folder.

Structure

Here we detail the structure of this repo. The ".ipynb" files are equivalent to the corresponding ".py" version, where the ".ipynb" are easy to perform tests, while ".py" are suitable for long-running experiments. The .py are transformed from the corresponding ".ipynb" files via jupyter nbconvert --to python {*.ipynb}. Here we detail the repo's structure:

  • The concept_library contains the concept class definitions and EBM model architectures.
  • The train.py (or the corresponding "train.ipynb" file) is the script for training elementary concepts and relations.
  • The inference.ipynb contains commands to perform zero-shot concept recognition and aquisition.
  • The concept_transfer.py and concepts_shapes.py contain helper functions and classes for training.
  • The datasets/data/ folder contains the datasets used for training. The datasets/babyarc_datasets.ipynb contains demonstrations about how to use the BabyARC engine to generate complex grid-world based reasoning tasks.
  • The results are saved under results/ folder,

Training:

Here we provide example commands for training energy-based models (EBMs) for concepts and relations. Full training command can be found under results/README.md. The results are saved under ./results/{--exp_id}_{--date_time}/, as a pickle "*.p" file.

For each saved experiment "*.p" file under ./results/{--exp_id}_{--date_time}/, it has a exp hash that uniquely encodes the arguments for this experiment. For example, if the result file is ./results/{--exp_id}_{--date_time}/c-Line_cz_16_model_CEBM_alpha_1_las_0.1_..._cf_2_p_0.2_id_0_Hash_fRZtzn33_turing4.p, then its hash is "fRZtzn33" at the end of the filename, which is a hash computed from all the argument for this experiment (therefore, different experiment will have different hash which does not overwrite each other under the same folder).

Training concepts for HD-Letter dataset (the --dataset argument specifies the dataset):

python train.py --dataset=c-Line --exp_id=zeroc --date_time=1-21 --inspect_interval=5 --save_interval=5 --color_avail=1,2 --n_examples=40000 --max_n_distractors=2 --canvas_size=16 --train_mode=cd --model_type=CEBM --mask_mode=concat --c_repr_mode=c2 --c_repr_first=2 --kl_coef=1 --entropy_coef_mask=0 --entropy_coef_repr=0 --ebm_target=mask --ebm_target_mode=r-rmbx --is_pos_repr_learnable=False --sample_step=60 --step_size=20 --step_size_repr=2 --lambd_start=0.1 --p_buffer=0.2 --epochs=500 --channel_base=128 --two_branch_mode=concat --neg_mode=addrand+delrand --aggr_mode=max --neg_mode_coef=0.05 --epochs=500 --early_stopping_patience=-1 --n_workers=0 --seed=1 --self_attn_mode=None --transforms=color+flip+rotate+resize:0.5 --act_name=leakyrelu --pos_consistency_coef=0.1 --energy_mode=standard+center^stop:0.1 --emp_target_mode=r-mb --gpuid=0

Training relation for HD-Letter dataset (the "+" in the "--dataset" means the relation/concept are randomly sampled from the specified relations/concepts):

python train.py --dataset=c-Parallel+VerticalMid+VerticalEdge --exp_id=zeroc --date_time=1-21 --inspect_interval=5 --save_interval=5 --color_avail=1,2 --n_examples=40000 --max_n_distractors=3 --canvas_size=16 --model_type=CEBM --mask_mode=concat --c_repr_mode=c2 --c_repr_first=2 --kl_coef=1 --entropy_coef_mask=0 --entropy_coef_repr=0 --ebm_target=mask --ebm_target_mode=r-rmbx --is_pos_repr_learnable=False --sample_step=60 --step_size=20 --step_size_repr=2 --lambd_start=0.1 --p_buffer=0.2 --epochs=500 --channel_base=128 --two_branch_mode=concat --neg_mode=addrand+permlabel --aggr_mode=max --neg_mode_coef=0.2 --epochs=500 --early_stopping_patience=-1 --n_workers=0 --seed=1 --self_attn_mode=None --transforms=color+flip+rotate+resize:0.5 --act_name=leakyrelu --pos_consistency_coef=1 --gpuid=0

Training concepts for HD-Concept dataset (the "Rect[4,16]" in the --dataset argument means that the size of "Rect" is within [4,16]):

python train.py --dataset=c-Rect[4,16]+Eshape[3,10] --exp_id=zeroc --date_time=1-21 --inspect_interval=2 --save_interval=2 --color_avail=1,2 --n_examples=40000 --max_n_distractors=2 --canvas_size=20 --train_mode=cd --model_type=CEBM --mask_mode=concat --c_repr_mode=c2 --c_repr_first=2 --kl_coef=1 --entropy_coef_mask=0 --entropy_coef_repr=0 --ebm_target=mask --ebm_target_mode=r-rmbx --is_pos_repr_learnable=False --sample_step=60 --step_size=20 --step_size_repr=2 --lambd_start=0.1 --p_buffer=0.2 --epochs=200 --channel_base=128 --two_branch_mode=concat --neg_mode=addrand+delrand+permlabel --aggr_mode=max --neg_mode_coef=0.05 --epochs=500 --early_stopping_patience=-1 --n_workers=0 --seed=1 --self_attn_mode=None --transforms=color+flip+rotate+resize:0.5 --act_name=leakyrelu --pos_consistency_coef=0.1 --energy_mode=standard+center^stop:0.005 --emp_target_mode=r-mb --gpuid=0

Training relation for HD-Concept dataset

python train.py --dataset=c-IsNonOverlapXY+IsInside+IsEnclosed\(Rect[4,16]+Randshape[3,8]+Lshape[3,10]+Tshape[3,10]\) --exp_id=zeroc --date_time=1-21 --inspect_interval=5 --save_interval=5  --color_avail=1,2 --n_examples=40000 --max_n_distractors=1 --canvas_size=20 --model_type=CEBM --mask_mode=concat --c_repr_mode=c2 --c_repr_first=2 --kl_coef=1 --entropy_coef_mask=0 --entropy_coef_repr=0 --ebm_target=mask --ebm_target_mode=r-rmbx --is_pos_repr_learnable=False --sample_step=60 --step_size=20 --step_size_repr=2 --lambd_start=0.1 --p_buffer=0.2 --epochs=300 --channel_base=128 --two_branch_mode=concat --neg_mode=addrand+permlabel --aggr_mode=max --neg_mode_coef=0.2 --epochs=500 --early_stopping_patience=-1 --n_workers=0 --seed=1 --self_attn_mode=None --transforms=color+flip+rotate+resize:0.5 --act_name=leakyrelu --pos_consistency_coef=1 --gpuid=0

Training 3D concepts (for experiments in the 2D->3D transfer):

python train.py --dataset=y-Line --exp_id=zeroc --date_time=1-21 --inspect_interval=5 --save_interval=5 --color_avail=1,2 --n_examples=40000 --max_n_distractors=2 --canvas_size=16 --train_mode=cd --model_type=CEBM --mask_mode=concat --c_repr_mode=c2 --c_repr_first=2 --kl_coef=1 --entropy_coef_mask=0 --entropy_coef_repr=0 --ebm_target=mask --ebm_target_mode=r-rmbx --is_pos_repr_learnable=False --sample_step=60 --step_size=30 --step_size_repr=2 --lambd_start=0.1 --p_buffer=0.2 --channel_base=128 --two_branch_mode=concat --neg_mode=addallrand+delrand+permlabel --aggr_mode=max --neg_mode_coef=0.2 --epochs=500 --early_stopping_patience=-1 --n_workers=0 --seed=1 --self_attn_mode=None --transforms=color+flip+rotate+resize:0.5 --pos_consistency_coef=0.1 --is_res=True --lr=1e-4 --id=0 --act_name=leakyrelu --rescaled_size=32,32 --energy_mode=standard+center^stop:0.1 --emp_target_mode=r-mb --color_map_3d=same --seed_3d=42 --batch_size=128 --gpuid=0

Training 3D relations:

python train.py --dataset=y-Parallel+VerticalMid+VerticalEdge --exp_id=zeroc --date_time=1-21 --inspect_interval=5 --save_interval=5 --color_avail=1,2 --n_examples=40000 --max_n_distractors=3 --canvas_size=16 --train_mode=cd --model_type=CEBM --mask_mode=concat --c_repr_mode=c2 --c_repr_first=2 --kl_coef=2 --entropy_coef_mask=0 --entropy_coef_repr=0 --ebm_target=mask --ebm_target_mode=r-rmbx --is_pos_repr_learnable=False --sample_step=60 --step_size=30 --step_size_repr=2 --lambd_start=0.1 --p_buffer=0.2 --channel_base=128 --two_branch_mode=concat --neg_mode=permlabel --aggr_mode=max --neg_mode_coef=0.2 --epochs=300 --early_stopping_patience=-1 --n_workers=0 --seed=3 --self_attn_mode=None --transforms=color+flip+rotate+resize:0.5 --pos_consistency_coef=1 --is_res=True --lr=1e-4 --id=0 --use_seed_2d=False --act_name=leakyrelu --rescaled_size=32,32 --color_map_3d=same --seed_3d=42 --batch_size=128 --gpuid=0

Inference

The zero-shot concept recognition and aquisition experiments are provided in inference_zero_shot.ipynb and the corresponding inference_zero_shot.py file.

The inference pipeline is as follows. First, depending on the type of inference, run one of the following evaluation command. The evaluation result will be saved under "./results/evaluation_{--evaluation_type}_{--date_time}/". Second, open the inference_zero_shot.ipynb notebook, and run the cells in section 1 and 2, and then the corresponding sub-section under Section 4 for accumulation of the evaluation results.

Below are the evaluation commands. For all commands below,replace the hash for --concept_model_hash and --relation_model_hash to the hash of the corresponding experiment. See "Training" section for how to get the hash for one experiment. Also, by default the --concept_load_id and --relation_load_id use the "best" which automatically selects the best model checkpoint by the average validation accuracy of classification and grounding. Alternatively, these two arguments can be manually set by inspecting the difference between the energy of the positive examples and energy of negative example. Typically, choosing the point where the energy difference begins to diverge can result in the best performance.

HDLetter dataset:

For classification with HDLetter dataset, run

python inference_zero_shot.py --evaluation_type=classify --dataset=c-Eshape+Fshape+Ashape --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=obj:0.001 --SGLD_pixel_entropy_coef=0 --canvas_size=16 --sample_step=150 --ensemble_size=64 --is_new_vertical=True --val_batch_size=1 --val_n_examples=400 --is_bidirectional_re=True --color_avail=1,2 --inspect_interval=20 --seed=2 --date_time=1-21 --concept_model_hash=fRZtzn33 --relation_model_hash=Wfxw19nM --gpuid=0

For detection (grounding) with Eshape, run:

python inference_zero_shot.py --evaluation_type=grounding-Eshape --dataset=c-Lshape+Tshape+Cshape+Eshape+Fshape+Ashape --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=obj:0.001 --SGLD_pixel_entropy_coef=0 --canvas_size=16 --sample_step=150 --ensemble_size=256 --is_new_vertical=True --color_avail=1,2 --inspect_interval=20 --seed=2 --date_time=1-21 --min_n_distractors=1 --max_n_distractors=2 --allow_connect=False --is_bidirectional_re=True  --concept_model_hash=fRZtzn33 --relation_model_hash=Wfxw19nM --gpuid=0

For detection (grounding) with Fshape, run:

python inference_zero_shot.py --evaluation_type=grounding-Fshape --dataset=c-Lshape+Tshape+Cshape+Eshape+Fshape+Ashape --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=obj:0.001 --SGLD_pixel_entropy_coef=0 --canvas_size=16 --sample_step=150 --ensemble_size=256 --is_new_vertical=True --color_avail=1,2 --inspect_interval=20 --seed=2 --date_time=1-21 --min_n_distractors=1 --max_n_distractors=2 --allow_connect=False --is_bidirectional_re=True  --concept_model_hash=fRZtzn33 --relation_model_hash=Wfxw19nM --gpuid=0

For detection (grounding) with Ashape, run:

python inference_zero_shot.py --evaluation_type=grounding-Ashape --dataset=c-Lshape+Tshape+Cshape+Eshape+Fshape+Ashape --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=obj:0.001 --SGLD_pixel_entropy_coef=0 --canvas_size=16 --sample_step=150 --ensemble_size=256 --is_new_vertical=True --color_avail=1,2 --inspect_interval=20 --seed=2 --date_time=1-21 --min_n_distractors=1 --max_n_distractors=2 --allow_connect=False --is_bidirectional_re=True  --concept_model_hash=fRZtzn33 --relation_model_hash=Wfxw19nM --gpuid=0

HDConcept dataset:

For classification with HDConcept dataset, run:

python inference_zero_shot.py --evaluation_type=classify --dataset=c-RectE1a+RectE2a+RectE3a --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=obj:0.001 --SGLD_pixel_entropy_coef=0 --canvas_size=20 --sample_step=150 --ensemble_size=64 --is_new_vertical=True --val_batch_size=1 --val_n_examples=200 --is_bidirectional_re=True --color_avail=1,2 --inspect_interval=20 --seed=2 --date_time=1-21 --concept_model_hash=AaalzcSD --relation_model_hash=NAzKCenZ --gpuid=0

For detection (grounding) with Concept1, run:

python inference_zero_shot.py --evaluation_type=grounding-RectE1a --dataset=c-Lshape+Tshape+Cshape+Eshape+Fshape+Ashape --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=False --SGLD_pixel_entropy_coef=0 --canvas_size=20 --sample_step=150 --ensemble_size=256 --is_new_vertical=True --color_avail=1,2 --inspect_interval=20 --seed=2 --date_time=1-21 --min_n_distractors=1 --max_n_distractors=1 --val_n_examples=200  --allow_connect=False --is_bidirectional_re=True  --is_proper_size=True --concept_model_hash=AaalzcSD --relation_model_hash=NAzKCenZ --gpuid=0

For detection (grounding) with Concept2, run:

python inference_zero_shot.py --evaluation_type=grounding-RectE2a --dataset=c-Lshape+Tshape+Cshape+Eshape+Fshape+Ashape --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=False --SGLD_pixel_entropy_coef=0 --canvas_size=20 --sample_step=150 --ensemble_size=256 --is_new_vertical=True --color_avail=1,2 --inspect_interval=20 --seed=2 --date_time=1-21 --min_n_distractors=1 --max_n_distractors=1 --val_n_examples=200 --allow_connect=False --is_bidirectional_re=True  --is_proper_size=True --concept_model_hash=AaalzcSD --relation_model_hash=NAzKCenZ --gpuid=0

For detection (grounding) with Concept3, run:

python inference_zero_shot.py --evaluation_type=grounding-RectE3a --dataset=c-Lshape+Tshape+Cshape+Eshape+Fshape+Ashape --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=False --SGLD_pixel_entropy_coef=0 --canvas_size=20 --sample_step=150 --ensemble_size=256 --is_new_vertical=True --color_avail=1,2 --inspect_interval=20 --seed=2 --date_time=1-21 --min_n_distractors=1 --max_n_distractors=1 --val_n_examples=200 --allow_connect=True --is_bidirectional_re=True  --is_proper_size=True --concept_model_hash=AaalzcSD --relation_model_hash=NAzKCenZ --gpuid=0

2D to 3D concept transfer:

First run the parse command to parse the new concepts into graphs for each example:

python inference_zero_shot.py --evaluation_type=yc-parse+classify^parse --dataset=yc-Eshape[5,9]+Fshape[5,9]+Ashape[5,9] --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=obj:0.001 --SGLD_pixel_entropy_coef=0 --canvas_size=16 --sample_step=150 --ensemble_size=64 --is_new_vertical=True --val_batch_size=1 --concept_model_hash=fRZtzn33 --relation_model_hash=Wfxw19nM --concept_model_hash_3D=jk4HQfir --relation_model_hash_3D=x72bDIyX --is_bidirectional_re=True --color_avail=1,2 --inspect_interval=1 --seed=2 --date_time=1-21 --topk=16 --gpuid=0

Then use the parsed graph, for classification in 3D image (replace the following --load_parse_src with the correct file under "./results/evaluation_yc-parse+classify^parse_{--date_time}/")

python inference_zero_shot.py --evaluation_type=yc-parse+classify^classify --load_parse_src=evaluation_yc-parse+classify^parse_1-21/evaluation_yc-parse+classify^parse_canvas_16_color_1,2_ex_400_min_0_model_hc-ebm_mutu_500.0_ens_64_sas_150_newv_True_batch_1_con_fRZtzn33_re_Wfxw19nM_bi_True_seed_2_id_None_Hash_mU7ILNWm_turing3.p --dataset=yc-Eshape[5,9]+Fshape[5,9]+Ashape[5,9] --SGLD_mutual_exclusive_coef=500 --SGLD_is_penalize_lower=obj:0.001 --SGLD_pixel_entropy_coef=0 --canvas_size=16 --sample_step=150 --ensemble_size=64 --is_new_vertical=True --val_batch_size=1 --concept_model_hash=fRZtzn33 --relation_model_hash=Wfxw19nM --concept_model_hash_3D=jk4HQfir --relation_model_hash_3D=x72bDIyX --is_bidirectional_re=True --color_avail=1,2 --inspect_interval=1 --seed=2 --date_time=1-21 --topk=16 --gpuid=0

Citation

If you find our work and/or our code useful, please cite us via:

@inproceedings{wu2022zeroc,
title={ZeroC: A neuro-symbolic model for zero-shot concept recognition and acquisition at inference time},
author={Wu, Tailin and Tjandrasuwita, Megan and Wu, Zhengxuan and Yang, Xuelin and Liu, Kevin and Sosi{\v{c}}, Rok and Leskovec, Jure},
booktitle={Neural Information Processing Systems},
year={2022},
}

About

ZeroC is a neuro-symbolic method that trained with elementary visual concepts and relations, can zero-shot recognize and acquire more complex, hierarchical concepts, even across domains

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published