Skip to content

A Deep-Learning-Based Chinese Speech Recognition System 基于深度学习的中文语音识别系统

License

Notifications You must be signed in to change notification settings

software8899/ASRT_SpeechRecognition

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Deep-Learning-Based Chinese Speech Recognition System

基于深度学习的中文语音识别系统,如果您觉得喜欢,请点一个 "Star" 吧~

GPL-3.0 Licensed TensorFlow Version Keras Version Python Version

ReadMe Language | 中文版 | English |

查看本项目的Wiki文档

如果程序运行期间或使用中有什么问题,可以及时在issue中提出来,我将尽快做出答复。本项目作者交流QQ群:867888133

提问前可以先 查看常见问题 避免重复提问

ASRT的原理请查看本文:

关于经常被问到的统计语言模型原理的问题,请看:

关于CTC的问题请看:

更多内容请访问作者的博客:AI柠檬博客

Introduction 简介

本项目使用Keras、TensorFlow基于深度卷积神经网络和长短时记忆神经网络、注意力机制以及CTC实现。

This project uses Keras, TensorFlow based on deep convolutional neural network and long-short memory neural network, attention mechanism and CTC to implement.

  • 操作步骤

首先通过Git将本项目克隆到您的计算机上,然后下载本项目训练所需要的数据集,下载链接详见文档末尾部分

$ git clone https://github.com/nl8590687/ASRT_SpeechRecognition.git

或者您也可以通过 "Fork" 按钮,将本项目Copy一份副本,然后通过您自己的SSH密钥克隆到本地。

通过git克隆仓库以后,进入项目根目录;并创建子目录 dataset/ (可使用软链接代替),然后将下载好的数据集直接解压进去

注意,当前版本中,Thchs30和ST-CMDS两个数据集都必须下载使用,缺一不可,并且使用其他数据集需要修改代码。

$ cd ASRT_SpeechRecognition

$ mkdir dataset

$ tar zxf <数据集压缩文件名> -C dataset/ 

然后需要将datalist目录下的文件全部拷贝到 dataset/ 目录下,也就是将其跟数据集放在一起。

$ cp -rf datalist/* dataset/

目前可用的模型有24、25和251

运行本项目之前,请安装必要的Python3版依赖库

本项目开始训练请执行:

$ python3 train_mspeech.py

本项目开始测试请执行:

$ python3 test_mspeech.py

测试之前,请确保代码中填写的模型文件路径存在。

ASRT API服务器启动请执行:

$ python3 asrserver.py

请注意,开启API服务器之后,需要使用本ASRT项目对应的客户端软件来进行语音识别,详见Wiki文档ASRT客户端Demo

如果要训练和使用模型251,请在代码中 import SpeechModel 的相应位置做修改。

Model 模型

Speech Model 语音模型

CNN + LSTM/GRU + CTC

其中,输入的音频的最大时间长度为16秒,输出为对应的汉语拼音序列

  • 关于下载已经训练好的模型的问题

可以在Github本仓库下releases里面的查看发布的各个版本软件的压缩包里获得包含已经训练好模型参数的完整源程序。

发布的成品软件可以在此下载:ASRT下载页面

Language Model 语言模型

基于概率图的最大熵隐马尔可夫模型

输入为汉语拼音序列,输出为对应的汉字文本

About Accuracy 关于准确率

当前,最好的模型在测试集上基本能达到80%的汉语拼音正确率

不过由于目前国际和国内的部分团队能做到98%,所以正确率仍有待于进一步提高

Python Import

Python的依赖库

  • python_speech_features
  • TensorFlow (1.13+)
  • Keras (2.3+)
  • Numpy
  • wave
  • matplotlib
  • math
  • Scipy
  • h5py
  • http
  • urllib

程序运行依赖环境详细说明

Data Sets 数据集

几个最新免费开源的中文语音数据集

特别鸣谢!感谢前辈们的公开语音数据集

如果提供的数据集链接无法打开和下载,请点击该链接 OpenSLR

License 开源许可协议

GPL v3.0 © nl8590687 作者:AI柠檬

Contributors 贡献者们

@zw76859420 @madeirak @ZJUGuoShuai @williamchenwl

@nl8590687 (repo owner)

打赏作者

About

A Deep-Learning-Based Chinese Speech Recognition System 基于深度学习的中文语音识别系统

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%